
SPACE HIERARCHY RESULTS FOR

RANDOMIZED AND

OTHER SEMANTIC MODELS

Jeff Kinne and Dieter van Melkebeek

Abstract. We prove space hierarchy and separation results for ran-
domized and other semantic models of computation with advice where
a machine is only required to behave appropriately when given the cor-
rect advice sequence. Previous works on hierarchy and separation the-
orems for such models focused on time as the resource. We obtain
tighter results with space as the resource. Our main theorems deal with
space-bounded randomized machines that always halt. Let s(n) be any
space-constructible monotone function that is Ω(log n) and let s′(n) be
any function such that s′(n) = ω(s(n + as(n))) for all constants a.

There exists a language computable by two-sided error ran-
domized machines using s′(n) space and one bit of advice
that is not computable by two-sided error randomized ma-
chines using s(n) space and min(s(n), n) bits of advice.
There exists a language computable by zero-sided error ran-
domized machines in space s′(n) with one bit of advice that
is not computable by one-sided error randomized machines
using s(n) space and min(s(n), n) bits of advice.

If, in addition, s(n) = O(n) then the condition on s′ above can be relaxed
to s′(n) = ω(s(n + 1)). This yields tight space hierarchies for typical
space bounds s(n) that are at most linear.
We also obtain results that apply to generic semantic models of compu-
tation.

Keywords. Space Hierarchy, Randomized Computations, Computa-
tions with Advice, Promise Classes, Semantic Models

Subject classification. 68Q15, 68Q10, 03D15, 68Q25

1. Introduction

A hierarchy theorem states that the power of a machine increases with the
amount of resources it can use. Time hierarchy theorems on deterministic

2 Kinne & Van Melkebeek

Turing machines follow by direct diagonalization: a machine N diagonalizes
against every machine Mi running in time t by choosing an input xi, simulat-
ing Mi(xi) for t steps, and then doing the opposite. Deriving a time hierarchy
theorem for nondeterministic machines is more complicated because a nondeter-
ministic machine cannot easily complement another nondeterministic machine
(unless NP=coNP). A variety of techniques can be used to overcome this diffi-
culty, including translation arguments and delayed diagonalization (Cook 1973;
Seiferas et al. 1978; Žàk 1983). In fact, these techniques allow us to prove time
hierarchy theorems for just about any syntactic model of computation. We call
a model syntactic if there exists a computable enumeration of all machines in
the model. For example, we can enumerate all nondeterministic Turing ma-
chines by representing their transition functions as strings and then iterating
over all such strings to discover each nondeterministic Turing machine.

Many models of computation of interest are not syntactic but semantic.
A semantic model is defined by imposing a promise on a syntactic model.
A machine belongs to the model if it is output by the enumeration of the
underlying syntactic model and its execution satisfies the promise on every
input. Bounded-error randomized Turing machines are an example of a non-
syntactic semantic model. There does not exist a computable enumeration
consisting of exactly all randomized Turing machines that satisfy the promise
of bounded error on every input, but we can enumerate all randomized Turing
machines and attempt to select among them those that have bounded error. In
general promises make diagonalization problematic because the diagonalizing
machine must satisfy the promise everywhere but has insufficient resources to
determine whether a given machine from the enumeration against which it tries
to diagonalize satisfies the promise on a given input.

Because of these difficulties good time hierarchies for semantic models
are known only when the model has been shown equivalent to a syntactic
model. These hierarchies result from equalities such as IP = PSPACE (Shamir
1992), MIP = NEXP (Babai et al. 1991), BP.⊕P = Σ2.⊕P (Toda 1991), and
PCP(log n,1) = NP (Arora et al. 1998). A recent line of research (Barak
2002; Fortnow & Santhanam 2004; Fortnow et al. 2005; Goldreich et al. 2004;
Van Melkebeek & Pervyshev 2007) has provided progress toward proving time
hierarchy results for non-syntactic models, including two-sided error random-
ized machines. Each of these results applies to semantic models that take ad-
vice, where the diagonalizing machine is only guaranteed to satisfy the promise
when it is given the correct advice. Many of the results require only one bit
of advice, which the diagonalizing machine uses to avoid simulating a machine
on an input for which that machine breaks the promise.

Space Hierarchy Results 3

As opposed to the setting of time, fairly good space hierarchy theorems
are known for certain non-syntactic models. In fact, the following simple
translation argument suffices to show that for any constant c > 1 there
exists a language computable by two-sided error randomized machines us-
ing (s(n))c space that is not computable by such machines using s(n) space
(Karpinski & Verbeek 1987), for any space-constructible s(n) that is Ω(log n).
Suppose by way of contradiction that every language computable by two-sided
error machines in space (s(n))c is also computable by such machines in space
s(n). A padding argument then shows that in that model any language com-
putable in (s(n))c2 space is computable in space (s(n))c and thus in space s(n).
We can iterate this padding argument any constant number of times and show
that for any constant d, any language computable by two-sided error machines
in space (s(n))d is also computable by such machines in s(n) space. For d > 1.5
we reach a contradiction with the deterministic space hierarchy theorem be-
cause randomized two-sided error computations that run in space s(n) can be
simulated deterministically in space (s(n))1.5 (Saks & Zhou 1999). The same
argument applies to non-syntactic models where s(n) space computations can
be simulated deterministically in space (s(n))d for some constant d, including
one- and zero-sided error randomized machines, unambiguous machines, etc.

Since we can always reduce the space usage by a constant factor by increas-
ing the work-tape alphabet size, the tightest space hierarchy result one can
hope for is to separate space s′(n) from space s(n) for any space-constructible
function s′(n) = ω(s(n)). For models like nondeterministic machines, which
are known to be closed under complementation in the space-bounded setting
(Immerman 1988; Szelepcsényi 1988), such tight space hierarchies follow by
straightforward diagonalization. For generic syntactic models, tight space hier-
archies follow using the same techniques as in the time-bounded setting. Those
techniques all require the existence of an efficient universal machine, which pre-
supposes the model to be syntactic. For that reason they fail for non-syntactic
models of computation such as bounded-error randomized machines.

In this paper we obtain space hierarchy results that are tight with respect to
space by adapting to the space-bounded setting techniques that have been de-
veloped for proving hierarchy results for semantic models in the time-bounded
setting.

1.1. Our Results. Like the time hierarchy results in this line of research,
our space hierarchy results have a number of parameters: (1) the gap needed
between the two space bounds, (2) the amount of advice that is needed for the
diagonalizing machine N , (3) the amount of advice that can be given to the

4 Kinne & Van Melkebeek

smaller space machines Mi, and (4) the range of space bounds for which the
results hold. We consider (1) and (2) to be of the highest importance. We focus
on space hierarchy theorems with an optimal separation in space – where any
super-constant gap in space suffices. This is an improvement over corresponding
time hierarchy results for semantic models (Barak 2002; Fortnow & Santhanam
2004; Fortnow et al. 2005; Goldreich et al. 2004; Van Melkebeek & Pervyshev
2007), which are not as tight with respect to time as the best time hierarchies for
syntactic models. The ultimate goal for (2) is to remove the advice altogether
and obtain uniform hierarchy results. As in the time-bounded setting, we do
not achieve this goal but get the next best result – a single bit of advice for
N suffices in each of our results. Given that we strive for space hierarchies
that are tight with respect to space and require only one bit of advice for the
diagonalizing machine, we aim to optimize parameters (3) and (4).

1.1.1. Randomized Models. Our strongest results apply to randomized
models. For two-sided error machines, we can handle a large amount of advice
and any typical space bound between logarithmic and linear.

Theorem 1.1. Let s(n) be any space-constructible monotone function such
that s(n) = Ω(log n), and let s′(n) be any function that is ω(s(n+as(n))) for all
constants a. There exists a language computable by two-sided error randomized
machines using s′(n) space and one bit of advice that is not computable by
two-sided error randomized machines using s(n) space and min(s(n), n) bits of
advice.

For s(n) = log(n), Theorem 1.1 gives a two-sided error machine using only
slightly larger than log n space that uses one bit of advice and differs from
all two-sided error machines using O(log n) space and O(log n) bits of advice.
Space-constructibility is a standard assumption in hierarchy theorems that is
true of typical space bounds. If s(n) is a space-constructible monotone function
that is at most linear, the condition on s′(n) in the above can be relaxed to
s′(n) = ω(s(n + 1)).

Corollary 1.2. Let s(n) be any space-constructible monotone function such
that s(n) = Ω(log n) and s(n) = O(n), and let s′(n) be any function such
that s′(n) = ω(s(n + 1)). There exists a language computable by two-sided
error randomized machines using s′(n) space and one bit of advice that is
not computable by two-sided error randomized machines using s(n) space and
min(s(n), n) bits of advice.

Space Hierarchy Results 5

We point out that Corollary 1.2 is as tight with respect to space as the space
hierarchies for generic syntactic models. In fact, typical space bounds s(n) that
are O(n) satisfy s(n + 1) = O(s(n)), meaning the condition on s′(n) can be
relaxed further to s′(n) = ω(s(n)). Thus Corollary 1.2 gives space hierarchies
that are tight with respect to space for typical space bounds that are at most
linear.

Our second main result gives a separation result with similar parameters as
those of Theorem 1.1 but for the cases of one- and zero-sided error randomized
machines. We point out that the separation result for zero-sided error machines
is new to the space-bounded setting as the techniques used to prove stronger
separations in the time-bounded setting do not work for zero-sided error ma-
chines. In fact, we show a single result that captures space separations for
one- and zero-sided error machines – that a zero-sided error machine suffices
to diagonalize against one-sided error machines.

Theorem 1.3. Let s(n) be any space-constructible monotone function such
that s(n) = Ω(log n), and let s′(n) be any function that is ω(s(n + as(n))) for
all constants a. There exists a language computable by zero-sided error ran-
domized machines using s′(n) space and one bit of advice that is not computable
by one-sided error randomized machines using s(n) space and min(s(n), n) bits
of advice.

As in the case of two-sided error, the condition on s′(n) can be relaxed
to s′(n) = ω(s(n + 1)) for space-constructible monotone space bounds s(n) =
O(n).

Corollary 1.4. Let s(n) be any space-constructible monotone function such
that s(n) = Ω(log n) and s(n) = O(n), and let s′(n) be any function that is
ω(s(n+1)). There exists a language computable by zero-sided error randomized
machines using s′(n) space and one bit of advice that is not computable by
one-sided error randomized machines using s(n) space and min(s(n), n) bits of
advice.

1.1.2. Generic Semantic Models. The above results take advantage of
specific properties of randomized machines that are not known to hold for
arbitrary semantic models. Our next results involve a generic construction
of Van Melkebeek & Pervyshev (2007) that applies to a wide class of seman-
tic models which the authors term reasonable. We refer to Section 4.4 for
the precise definitions; but besides randomized two-, one-, and zero-sided er-
ror machines, the notion also encompasses bounded-error quantum machines

6 Kinne & Van Melkebeek

(Watrous 2003), unambiguous machines (Buntrock et al. 1991), Arthur-Merlin
games and interactive proofs (Condon 1993), etc. When applied to the loga-
rithmic space setting, the construction yields the following.

Theorem 1.5 (follows from Van Melkebeek & Pervyshev (2007)).
Fix any reasonable semantic model of computation that can be safely comple-
mented with a linear-exponential overhead in space. Let s′(n) be any function
with s′(n) = ω(log n). There exists a language computable using s′(n) space
and one bit of advice that is not computable using O(log n) space and O(1)
bits of advice.

The performance of the generic construction is poor on the last two pa-
rameters we mentioned earlier – it allows few advice bits on the smaller space
side and is only tight for s(n) = O(logn). Either of these parameters can be
improved for models that can be safely complemented with only a polynomial
overhead in space – models for which the simple translation argument works. In
fact, there is a trade-off between (a) the amount of advice that can be handled
and (b) the range of space bounds for which the result is tight. By maximizing
(a) we get the following.

Theorem 1.6. Fix any reasonable semantic model of computation that can
be safely complemented with a polynomial overhead in space. Let d be a
rational upper bound on the degree of the latter polynomial. Let s′(n) be any
function with s′(n) = ω(logn). There exists a language computable using s′(n)
space and one bit of advice that is not computable using O(logn) space and
O(log1/d n) bits of advice.

In fact, a tight separation in space can be maintained while allowing
O(log1/d n) advice bits for s(n) any poly-logarithmic function, but the sepa-
ration in space with this many advice bits is no longer tight for larger s(n).
By maximizing (b), we obtain a separation result that is tight for sufficiently
smooth space bounds between logarithmic and polynomial. We state the result
for polynomial space bounds.

Theorem 1.7. Fix any reasonable semantic model of computation that can
be safely complemented with a polynomial overhead in space. Let d be a ratio-
nal upper bound on the degree of the latter polynomial, let r be any positive
constant, and let s′(n) be any space bound that is ω(nr). There exists a lan-
guage computable in space s′(n) with one bit of advice that is not computable
in space O(nr) with O(1) bits of advice.

Space Hierarchy Results 7

When applied to randomized machines, Theorem 1.7 gives a tight separa-
tion result for slightly higher space bounds than Theorem 1.1 and Theorem 1.3,
but the latter can handle more advice bits.

1.1.3. Promise Problems. Our proofs use advice in a critical way to de-
rive hierarchy theorems for languages computable by semantic models. We can
obviate the need for advice by considering promise problems rather than lan-
guages. A promise problem only specifies the behavior of a machine on a subset
of the inputs; the machine may behave arbitrarily on inputs outside of this set.
For semantic models of computation, one can associate in a natural way a
promise problem to each machine in the underlying enumeration. For example,
for randomized machines with bounded error, the associated promise problem
only specifies the behavior on inputs on which the machine has bounded er-
ror. The ability to ignore problematic inputs allows traditional techniques to
demonstrate good space and time hierarchy theorems for the promise problems
computable by semantic models. This is a folklore result, but there does not
appear to be a correct proof in the literature; we include one in this paper.

Theorem 1.8 (folklore). Fix any reasonable semantic model of computation
that can be safely complemented with a computable overhead in space. Let s(n)
and s′(n) be space bounds with s(n) = Ω(log n) and s′(n) space-constructible.
If s′(n) = ω(s(n + 1)) then there is a promise problem computable within the
model using space s′(n) that is not computable as a promise problem within
the model using space s(n).

1.2. Our Techniques. Recently, Van Melkebeek & Pervyshev (2007)
showed how to adapt the technique of delayed diagonalization to obtain
time hierarchies with one bit of advice for any reasonable semantic model
of computation in which complementation can be performed with a linear-
exponential overhead in space. For any constant a, they exhibit a language
that is computable in polynomial time with one bit of advice but not in linear
time with a bits of advice. Our results for generic models of computation
(Theorem 1.5, Theorem 1.6, and Theorem 1.7) follow from a space-efficient
implementation and a careful analysis of that approach.

Our stronger results for randomized machines follow a different type of ar-
gument, which roughly goes as follows. When N diagonalizes against machine
Mi, it tries to achieve complementary behavior on inputs of length ni by re-
ducing the complement of Mi at length ni to instances of some hard language
L of length somewhat larger than ni, say mi. The hard language L is chosen
so that it has a space-efficient recovery procedure, described momentarily. N

8 Kinne & Van Melkebeek

may not be able to compute L on those instances directly as it is unknown if
L can be computed in small space. We instead use a delayed computation and
copying scheme that forces Mi to aid N in the computation of L if Mi agrees
with N on inputs larger than mi. As a result, either Mi differs from N on some
inputs larger than mi, or else N can decide L at length mi in small space and
therefore diagonalize against Mi at length ni.

The critical component of the copying scheme is the following task. Given
a list of randomized machines with the guarantee that at least one of them sat-
isfies the promise and correctly decides L at length m in small space, construct
a single randomized machine that satisfies the promise and decides L at length
m in small space. We call a procedure accomplishing this task a space-efficient
recovery procedure for L.

The main technical contributions of this paper are the design of recovery
procedures for adequate hard languages L. For Theorem 1.1 we use the com-
putation tableau language, which is an encoding of bits of the computation
tableaux of deterministic machines; we develop a recovery procedure based on
the local checkability of computation tableaux. For Theorem 1.3 we use the
configuration reachability language, which is an encoding of pairs of configura-
tions that are connected in a nondeterministic machine’s configuration graph;
we develop a recovery procedure from the proof that NL=coNL (Immerman
1988; Szelepcsényi 1988).

1.2.1. Relation to Previous Work. Our high-level strategy is most akin
to the one used in Van Melkebeek & Pervyshev (2007). In the time-bounded
setting, Van Melkebeek & Pervyshev (2007) achieve a strong separation for
two-sided error randomized machines using the above construction with sat-
isfiability as the hard language L. The recovery procedure exploits the self-
reducibility of satisfiability to obtain satisfying assignments for satisfiable for-
mulae. As the partial assignment must be stored during the construction, this
approach uses too much space to be useful in the setting of this paper.

Van Melkebeek & Pervyshev (2007) also derive a stronger separation for
bounded error quantum machines in the time-bounded setting, with the hard
language L being PSPACE-complete. A time-efficient recovery procedure for L
follows from the existence of instance checkers (Blum & Kannan 1995) for L.
The latter transformation of instance checkers into recovery procedures criti-
cally relies on large memory space. Instance checkers are only guaranteed to
work when given a fixed oracle to test; their properties carry over to testing
randomized procedures by treating randomized procedures as probability dis-
tributions over oracles. This works in the time-bounded setting because we

Space Hierarchy Results 9

can ensure consistent answers to the oracle queries by storing the answers of
the randomized procedure to all queries the first time they are asked. In the
space-bounded setting we do not have the resources to store the answers to
all queries, and it is not immediate that a small space instance checker for
a language implies a small space recovery procedure. Using new ingredients,
we develop a space-efficient recovery procedure for the computation tableau
language from scratch. In fact, our argument shows that every language that
admits a small space instance checker also admits a small space recovery proce-
dure. However, this transformation inherently introduces two-sided error, and
we use other techniques to develop recovery procedures for one- and zero-sided
error machines.

For reasons of completeness, we point out that some of our results can also
be obtained using a different high-level strategy than the delayed diagonaliza-
tion with advice strategy of Van Melkebeek & Pervyshev (2007). Some of the
results of Van Melkebeek & Pervyshev (2007) in the time-bounded setting can
also be derived by adapting translation arguments to use advice (Barak 2002;
Fortnow & Santhanam 2004; Fortnow et al. 2005; Goldreich et al. 2004). It is
possible to derive our Theorem 1.1 and Theorem 1.3 following a space-bounded
version of the latter strategy. However, the proofs still rely on the recovery pro-
cedure as a key technical ingredient and we feel that our proofs are simpler.
Moreover, for the case of generic semantic models, our approach yields results
that are strictly stronger.

1.3. Organization. Section 2 contains the elements of computational com-
plexity theory we use in this paper. Section 3 contains the proofs of our separa-
tion results for randomized models (Theorem 1.1, Corollary 1.2, Theorem 1.3,
and Corollary 1.4). Section 4 contains the proofs of our separation results
for generic semantic models (Theorem 1.5, Theorem 1.6 and Theorem 1.7).
Section 5 contains a proof of the hierarchy theorem for promise problems
(Theorem 1.8).

2. Preliminaries

Here we introduce the machine models we use throughout the paper and state
relevant properties. A reader familiar with the basics of computational com-
plexity may wish to skip this section and refer back to it as needed. For a
more thorough treatment of these concepts and properties, see Arora & Barak
(2009) and Goldreich (2008).

10 Kinne & Van Melkebeek

2.1. Deterministic Turing Machines. As is standard, we use the multi-
tape deterministic Turing machine as our base machine model. We use the
notation M(x) = 1 to indicate that M halts and accepts x, M(x) = 0 to
indicate that M halts and rejects x, and M(x) =↑ to indicate that M on input
x does not terminate. A language L is a subset of strings. When x ∈ L we also
write L(x) = 1, and when x /∈ L we say that L(x) = 0. Thus if M(x) = L(x)
then M halts and decides L correctly on input x.

The space usage of machine M on input x is defined as the number of work-
tape cells that are touched during the computation; the space usage of M at
input length n is defined as the maximum over all x of length n. For a space
bound s : N→ N, we say M uses space at most s if M uses space at most s(n)
at input length n, for all n ∈ N. Time usage of M is similarly defined based
on the number of steps in M ’s execution.

We restrict ourselves to machines M that use the binary alphabet for their
input and output tapes. However, M may have a number of work tapes and
work-tape alphabet of its own choosing; for a fixed machine M its work-tape
alphabet and number of work tapes are of constant size. Allowing machines
with arbitrary alphabet sizes has the following consequence. Suppose M uses
space s(n). Then for any constant c > 0, there exists a machine M ′ that uses
at most max(c · s(n), 1) space and behaves as M on every input. For c < 1,
M ′ uses a larger alphabet size than M and compresses each block of roughly
1/c tape cells of M into one tape cell using its larger alphabet size. The ability
to compress space usage by any constant factor implies machines that run in
space s(n) and O(s(n)) are equally powerful.

We can represent each Turing machine M as a binary string by encoding
its number of work tapes, size of alphabet, transition function, etc. as binary
strings. We use M to denote both the machine and the binary string that
represents the machine. We can assume without loss of generality that a Turing
machine M has a unique accepting configuration (internal state, tape contents,
and tape head locations) by ensuring it clears its tape contents and resets its
tape heads before entering a unique accepting state. We can similarly assume
that M has a unique rejecting configuration. These transformations do not
increase the space usage of the machine.

Conversely, we can assume that every string is a description of some Tur-
ing machine. This follows by taking a standard encoding of Turing machines
and mapping any string that is not valid in that encoding to a default Tur-
ing machine, for example the Turing machine that immediately rejects on all
inputs. We point out that this trivially makes deterministic Turing machines
computably enumerable, as defined next.

Space Hierarchy Results 11

Definition 2.1 (computable enumeration). A set S is computably enumer-
able if there exists a Turing machine M such that

(i) on input i, M(i) outputs a string y with y ∈ S,

(ii) for any y ∈ S, there exists an i such that M(i) outputs y, and

(iii) M(i) halts for every input i.

We note that in standard enumerations (Mi)i=1,2,3,... of deterministic Turing
machines, each machine Mi appears infinitely often as different encodings of the
same machine. Each of these encodings, though, has the same number of work
tapes, the same tape alphabets, the same internal states, and the same behavior
on any given input. Typical diagonalization arguments proceed by having a
diagonalizing machine N iterate over all machine Mi in turn and ensure that N
computes a language different than Mi. As Mi appears infinitely often within
the enumeration, N has an infinite number of opportunities to successfully
differentiate itself from Mi.

There exists a space-efficient universal Turing machine U to simulate other
Turing machines. Namely, given input (M, x), U(M, x) = M(x) and if M(x)
uses space s then U uses at most a · s space where a is a constant that only
depends on the control characteristics of M – its number of tapes, work-tape
alphabet size and number of states – but is the same for each of the infinitely
many different occurrences Mi of the machine M in the enumeration of ma-
chines. We can equip the universal machine U with a space counter to keep it
from using more space than we want. For any space-constructible function s
(defined next), there exists a universal machine Us such that Us(M, x) = M(x)
if M(x) uses at most s space, and Us(M, x) uses at most a′ · s(|x|) space where
a′ is a constant depending only on s and the control characteristics of M .
We implicitly use the universal machine throughout this paper whenever the
diagonalizing machine needs to simulate another machine.

Definition 2.2 (space-constructible). A space bound s is defined as space-
constructible if there exists a Turing machine using O(s(n)) space which on
input 1n produces as output s(n) many 1’s.

Most common space bounds we work with are space-constructible, including
polynomials, exponentials, and logarithms.

We can also equip Turing machines with advice. Turing machines with
advice are a non-uniform model of computation in which the machine has
access to an advice string that varies depending on the input length. This

12 Kinne & Van Melkebeek

so-called advice is given as an additional input to the Turing machine. We use
α and β to denote infinite sequences of advice strings.

Definition 2.3 (computation with advice). A Turing machine M with ad-
vice sequence α decides on an input x by performing the computation
M(x; α|x|), denoted M(x)/α|x|. M with advice sequence α, denoted M/α,
computes a language L if for every x, M(x)/α|x| = L(x). If |αn| = a(n) for all
n, we say that L can be computed with a(n) bits of advice.

When we are interested in the execution of M/α on inputs of length n, we
write M/a where a = αn.

2.2. Randomized Turing Machines. A randomized Turing machine is a
deterministic Turing machine that in addition is given a read-only one-way
infinite tape of random bits in addition to the usual input, work, and output
tapes. With the contents of the random bit tape fixed to some value, a ran-
domized Turing machine behaves as a standard Turing machine. The behavior
of a randomized Turing machine M on a given input x with the random bits r
unfixed is a random variable M(x; r) over the probability space of the random
bit tape with the uniform distribution. In particular, the contents of the output
tape and whether the machine enters the accept or reject states are random
variables.

We say that a randomized Turing machine M uses space s(|x|) and time
t(|x|) if M(x; r) uses at most s(|x|) space and t(|x|) time for every possible
choice of randomness r.

In the case of space-bounded randomized Turing machines, it may be possi-
ble that a machine uses at most space s but nevertheless does not terminate for
some values of the random bit tape. Allowing space-bounded randomized ma-
chines to execute indefinitely gives them significant power, namely the power of
nondeterminism. We only consider space-bounded randomized machines which
are guaranteed to halt for all possible contents of the random bit tape. One
implication of this assumption is that a randomized machine M using space
s = Ω(log n) runs in 2as time for a constant a that depends only on the control
characteristics of M . This follows from the fact that the number of configu-
rations of a space s machine is O(n2O(s)), which is 2O(s) for s = Ω(log n), and
none of these configurations can be repeated for a machine which always halts.
For more on the basic properties of space-bounded randomized machines, see
Saks (1996).

Intuitively, a randomized machine computes a function f if for every input
x, M(x; r) = f(x) with high probability over r. In this paper we focus on

Space Hierarchy Results 13

decision problems f , or equivalently, languages L. We consider three different
types of error behavior for a randomized machine computing a language: two-,
one-, and zero-sided error.

Definition 2.4 (two-sided error). A randomized machine M computes a lan-
guage L with two-sided error if for every x, Prr[M(x; r) = L(x)] ≥ 2

3
.

If Prr[M(x; r) = 1] < 2
3

and Prr[M(x; r) = 0] < 2
3

we say that M breaks
the promise of two-sided error on input x; otherwise we say M satisfies the
promise of two-sided error on input x. The complexity class BPL consists of
the languages that can be computed by a logarithmic space two-sided error
Turing machine that always halts.

Definition 2.5 (one-sided error). A randomized machine M computes a lan-
guage L with one-sided error if

(i) for every x ∈ L, Prr[M(x; r) = 1] ≥ 1
2
, and

(ii) for every x /∈ L, Prr[M(x; r) = 0] = 1.

If Prr[M(x; r) = 1] < 1
2

and Prr[M(x; r) = 0] < 1 we say that M breaks
the promise of one-sided error on input x. The complexity class RL consists
of the languages that can be computed by a logarithmic space one-sided error
Turing machine that always halts.

If we remove the requirement of bounded error in (i), we are left with
a syntactic model of computation, namely nondeterministic Turing machines,
which is at least as powerful as the semantic model of one-sided error machines.
When viewed as a nondeterministic machine, the random bits from the random
bit tape are now viewed as “guess bits” from a nondeterministic tape. We say
that a nondeterministic machine M computes a language L if for every x,
Prr[M(x; r) = 1] > 0 if and only if x ∈ L.

To define zero-sided error, we consider three possible outcomes of the com-
putation: 1 meaning accept, 0 meaning reject, or ? meaning unsure.

Definition 2.6 (zero-sided error). A randomized machine M computes L
with zero-sided error if

(i) for every x, Prr[M(x; r) /∈ {0, 1}] ≤ 1
2
, and

(ii) for every x, Prr[M(x; r) = ¬L(x)] = 0.

14 Kinne & Van Melkebeek

If Prr[M(x; r) /∈ {0, 1}] > 1
2

or (Prr[M(x; r) = 1] > 0 and Prr[M(x; r) =
0] > 0) we say that M breaks the promise of zero-sided error on input x. The
complexity class ZPL consists of the languages that can be computed by a
logarithmic space zero-sided error Turing machine that always halts.

When speaking of a two-sided error (respectively one- or zero-sided error)
randomized machine M , we say that M(x) = 1 if the acceptance condition
of M on input x is met – namely that Prr[M(x; r) = 1] ≥ 2

3
(respectively

Prr[M(x; r) = 1] ≥ 1
2

or (Prr[M(x; r) /∈ {0, 1}] ≤ 1
2

and Prr[M(x; r) = 0] = 0)).
Similarly, we say that M(x) = 0 if the rejection condition of M on input x is
met.

As a randomized machine has at its base a deterministic Turing machine,
many of the properties of deterministic Turing machines carry over. We can
assume that there are unique accepting and rejecting configurations. We can
encode randomized Turing machines as binary strings such that every random-
ized Turing machine has infinitely many different encodings and every string
represents some randomized Turing machine. This trivially gives a computable
enumeration of randomized Turing machines where each machine appears in-
finitely often.

The space-efficient universal machine U also carries over from the class of
deterministic Turing machines to the class of randomized Turing machines. In
particular, this machine U allows for space-efficient simulations of randomized
machines with two-, one-, or zero-sided error. However, U itself does not sat-
isfy the promise of two-, one-, or zero-sided error on all inputs and therefore is
not universal for two, one-, or zero-sided error machines. In fact, the existence
of a space-efficient universal machine for two-, one-, or zero-sided error ma-
chines remains open, and if one exists then known diagonalization techniques
immediately give tight space hierarchies for these models without advice.

Randomized machines take advice in much the same way that deterministic
Turing machines take advice – as an additional input. We refer to Section 2.3
for the precise meaning of a bounded-error machine with advice as a special
case of semantic models with advice.

2.2.1. Error Reduction. Given a randomized machine deciding a language
L, majority voting allows us to decrease the probability the machine errors.
One way to view this is as an application of the Chernoff bound. We use the
following instantiation (see, for example, Motwani & Raghavan (1995, Theo-
rem 4.2 and Theorem 4.3)).

Space Hierarchy Results 15

Theorem 2.7 (Chernoff bound). Let Xi be independent identically dis-
tributed 0/1 random variables, and let Sτ =

∑τ
i=1 Xi. Let µ = τ · E[X1]

be the mean of Sτ .

(i) For any ∆ > 0, Pr[Sτ < µ−∆] ≤ e−∆2/(2µ).

(ii) For 0 ≤ ∆ ≤ (2e− 1)µ, Pr[Sτ > µ + ∆] ≤ e−∆2/(4µ).

Consider a randomized machine M on input x, and assume that
Prr[M(x; r) = L(x)] = 1

2
+ γ for some γ > 0. We run M(x) some number

τ times independently, that is, with fresh random bits for each execution. For
i = 1, 2, ..., τ , we let Xi = 1 if the ith execution of M(x) produces the correct
result, and Xi = 0 otherwise. Theorem 2.7 tells us that the number of cor-
rect outputs in the τ trials does not stray far from the expected number. By
applying both (i) and (ii), the probability that the fraction of correct outputs
lies outside of the range [1

2
, 1

2
+ 2γ] is at most e−τγ2/4 + e−τγ2/2 ≤ 2e−τγ2/4. In

particular, the probability that the majority vote of τ independent trials of M
is incorrect is exponentially small in τ .

For one- and zero-sided error machines, we can reduce the error somewhat
more efficiently. For a one-sided error machine M , we take the OR of τ in-
dependent trials of M(x). This preserves the one-sided error condition and if
Prr[M(x; r) = 1] ≥ 1

2
then the probability that the OR of τ independent trials

is incorrect is at most 1
2τ . The error of a zero-sided error machine M is similarly

reduced to 1
2τ by taking τ independent trials and outputting 0 if M(x) outputs

0 on any of the trials, 1 if M(x) outputs 1 on any of the trials, and ? if M(x)
outputs ? otherwise.

2.2.2. Deterministic Simulations. A space s = Ω(log n) randomized Tur-
ing machine Mi that always halts can be simulated by a deterministic Turing
machine D that runs in time 2as(n) for some constant a that only depends on
the control characteristics of Mi. D on input x accepts if Prr[Mi(x; r) = 1] ≥ 1

2

and rejects otherwise.
We sketch this simulation. To achieve D, we first view Mi as defining a

Markov chain whose states are the t = 2O(s(n)) possible configurations of Mi

and whose transition probabilities are governed by the transition function of Mi.
As Mi on input x halts within t time steps, we determine if Prr[Mi(x; r) = 1]
is at least 1/2 by taking the tth power of the Markov chain’s transition matrix
and examine the resulting probability for the state corresponding to the unique
accepting configuration of Mi. The main task of D is to compute an entry in
the product of the tth power of the t× t transition matrix of the Markov chain,
which can be done in polynomial time in t, i.e., in time 2O(s(n)).

16 Kinne & Van Melkebeek

We point out that deterministic simulations of bounded-error randomized
machines are known which use smaller space (Nisan 1992; Saks & Zhou 1999),
but the above suffices for our purposes.

2.3. Semantic Models. A syntactic model of computation is defined by a
computable enumeration of machines M1, M2, . . ., and a mapping that asso-
ciates with each Mi and input x the output Mi(x) (if any). Deterministic
Turing machines and randomized Turing machines are examples of syntactic
models, where for a randomized machine M on input x we can define M(x) = 1
if Prr[M(x; r) = 1] ≥ 1

2
, and M(x) = 0 otherwise.

A semantic model is obtained from a syntactic model by imposing a promise
π, which is a Boolean predicate on pairs consisting of a machine Mi from the
underlying enumeration and an input x. We say that Mi satisfies the promise
on input x if π(Mi, x) = 1. A machine Mi is termed valid, or said to fall
within the semantic model, if it satisfies the promise on all inputs. The models
of randomized machines with two-, one- and zero-sided error are examples of
semantic models. They can be obtained by imposing the promise of two-, one-,
and zero-sided error on randomized Turing machines.

In fact, these models are examples of non-syntactic semantic models, i.e.,
there does not exist a computable enumeration that consists exactly of all ma-
chines within the model. To see that the class of bounded-error randomized
Turing machines is not computably enumerable, we note that the complement
of the halting reduces to the set of bounded-error randomized machines. Given
a deterministic machine M and input x, the reduction maps (M, x) to a ran-
domized Turing machine M ′ that behaves as follows. M ′ on input t simulates
M(x) for at most t steps; if M(x) halts before this point then M ′ outputs 1
with probability 1/2 and 0 with probability 1/2, and if M(x) does not halt
within t steps then M ′ on input t outputs 1 with probability 1. Note that
M ′ satisfies the promise of bounded error on all inputs if and only if M(x)
does not halt. Thus, the complement of the halting problem reduces to the set
of bounded-error randomized machines. Since the former is not computably
enumerable, the latter cannot be either.

Other examples of non-syntactic semantic models include bounded-error
quantum machines (Watrous 2003), unambiguous machines (Buntrock et al.
1991), Arthur-Merlin games and interactive proofs (Condon 1993), etc. We
refer to Van Melkebeek & Pervyshev (2007) for a more formal treatment of
syntactic versus semantic models.

We can equip a semantic model with advice and define advice within se-
mantic models in much the same way we have for deterministic machines.

Space Hierarchy Results 17

Definition 2.8 (semantic model with advice). Given a semantic model, a
machine M from the underlying enumeration with advice sequence α decides on
input x by performing the computation M(x; α|x|), denoted M(x)/α|x|. M with
advice sequence α, denoted M/α, computes a language L within the model if
for every x, M(x)/α|x| satisfies the underlying promise and M(x)/α|x| = L(x).

We do not require that M satisfy the promise when given an “incorrect”
advice string. We note that this differs from the notion of advice introduced in
Karp & Lipton (1982), where the machine must satisfy the promise no matter
which advice string is given. We point out that a hierarchy for a semantic model
with advice under the stronger Karp-Lipton notion would imply the existence
of a hierarchy without advice. Indeed, suppose we have a hierarchy with a(n)
bits of advice under the Karp-Lipton notion. Then there is a valid machine
M ′ running in space s′(n) and an advice sequence α′

0, α′
1, ... with |α′

n| = a(n)
such that for all valid machines M running in space s(n), and for all advice
sequences α0, α1, ... with |αn| = a(n), there is an input x such that M ′(x)/α′

|x|

and M(x)/α|x| disagree. In particular, we have that M ′ and M disagree on
z = (x; α′

|x|). Thus M ′ is a valid machine using space s′(n) on inputs of length

n + a(n) which differs from all valid machines that use space s(n) on inputs of
length n + a(n).

2.4. Promise Problems. Promise problems are computational problems
that are only specified for a subset of all possible input strings, namely those
that satisfy a certain promise. We will only deal with promise decision prob-
lems, which can be defined formally as follows.

Definition 2.9 (promise problem). A promise problem is a pair of disjoint
sets (ΠY , ΠN) of strings.

The set ΠY in Definition 2.9 represents the set of “yes” instances, i.e., the
inputs for which the answer is specified to be positive. Similarly, ΠN denotes
the set of “no” instances. The sets ΠY and ΠN must be disjoint for consistency,
but do not need to cover the space of all strings. If they do, we are in the special
case of a language. Otherwise, we are working under the nontrivial promise
that the input string lies in ΠY ∪ΠN .

A machine solving a promise problem is like a program with a precondition
– we do not care about its behavior on inputs outside of ΠY ∪ΠN . In particular,
for the time and space complexity of the machine we only consider inputs in
ΠY ∪ ΠN . In the case of semantic models, the machine only has to satisfy the
promise π underlying the semantic model on inputs x that satisfy the promise

18 Kinne & Van Melkebeek

x ∈ ΠY ∪ ΠN of the promise problem.

3. Randomized Machines with Bounded Error

In this section we give the constructions for Theorem 1.1, Corollary 1.2,
Theorem 1.3, and Corollary 1.4. We first describe the high-level strategy used
for these results. Most portions of the construction are the same for both, so
we keep the exposition general. We aim to construct a randomized machine N
and advice sequence α witnessing Theorem 1.1 and Theorem 1.3 for some space
bounds s(n) and s′(n). N/α should always satisfy the promise, run in space
s′(n), and differ from Mi/β for randomized machines Mi and advice sequences
β for which Mi/β behaves appropriately. We define the latter as follows.

Definition 3.1 (appropriate behavior of bounded-error machines). In the
context of two-sided (respectively one- or zero-sided) error randomized ma-
chines and given an underlying space bound s(n), a randomized machine Mi

with advice sequence β behaves appropriately if Mi/β satisfies the promise of
two-sided (respectively one- or zero-sided) error and uses at most s(n) space
on all inputs.

As with delayed diagonalization, for each Mi we allocate an interval of input
lengths [ni, n

∗
i] on which to diagonalize against Mi. That is, for each machine

Mi and advice sequence β such that Mi/β behaves appropriately, there is an
n ∈ [ni, n

∗
i] such that N/α and Mi/β decide differently on at least one input

of length n. The construction consists of three main parts: (1) reducing the
complement of the computation of Mi on inputs of length ni to instances of
a hard language L of length mi, (2) performing a delayed computation of L
at length mi on padded inputs of length n∗

i , and (3) copying this behavior to
smaller and smaller inputs down to input length mi. These ensure that if Mi/β
behaves appropriately, either N/α differs from Mi/β on some input of length
larger than mi, or N/α computes L at length mi allowing N/α to differ from
Mi/b for all possible advice strings b at length ni.

We begin by assuming a hard language L as in (1) and develop an intu-
ition for why advice and recovery procedures are needed to achieve (2) and
(3) (Section 3.1). We then describe the hard language L and recovery pro-
cedure for L for the cases of two-sided error machines (Section 3.2) and one-
and zero-sided error machines (Section 3.3). Finally, we complete the construc-
tion (Section 3.4) and give the analysis (Section 3.5) that yields the parameters
stated in Theorem 1.1, Corollary 1.2, Theorem 1.3, and Corollary 1.4. An il-
lustration of the completed construction with advice is given in Section 3. The

Space Hierarchy Results 19

... ...mi + 1
Input

Length ni mi

N

Mi y

y 0ℓy

0ℓy

n∗
i = mi + ℓ

L

mi + ℓ
−1

0ni−|b|b

0ni−|b|b

ni + 1

y

Figure 3.1: Illustration of the construction for Theorem 1.1 and Theorem 1.3.
The solid arrow indicates that on input 0ℓy, N deterministically computes L(y)
for each y of length mi. The dotted arrows indicate that for ℓ′ ∈ [0, ℓ− 1], on
input 0ℓ′y with advice bit 1, N attempts to compute L(y) by using the recovery
procedure and making queries to Mi on padded inputs of one larger length. The
dashed line indicates that on input 0ni−|b|b with advice bit 1, N complements
Mi(0

ni−|b|b)/b by reducing to an instance y of L and simulating N(y).

reader is encouraged to refer to Section 3 as we develop the construction.

3.1. The Need for Advice and Recovery Procedures. Let us first try
to develop delayed diagonalization without advice to see where problems arise
due to working in a semantic model and how advice and recovery procedures
can be used to fix those.

On an input x of length ni, N reduces the complement of Mi(x) to an
instance of L of length mi. Because N must run in space not much more than
s(n) and we do not know how to compute the hard languages we use with
small space, N cannot directly compute L at length mi. However, L can be
computed at length mi within the space N is allowed to use on much larger
inputs. Let n∗

i be large enough so that L at length mi can be deterministically
computed in space s(n∗

i). We let N at length n∗
i perform a delayed computation

of L at length mi as follows: on inputs of the form 0ℓy where ℓ = n∗
i −mi and

|y| = mi, N uses the above deterministic computation of L on input y to ensure
that N(0ℓy) = L(y).

Since N performs a delayed computation of L, Mi must as well – otherwise
N already computes a language different than Mi. We would like to bring this
delayed computation down to smaller padded inputs. The first attempt at this
is the following: on input 0ℓ′y, N simulates Mi(0

ℓ′+1y), for all 0 ≤ ℓ′ < ℓ. If
Mi behaves appropriately and performs the initial delayed computation, then
N(0ℓ−1y) = Mi(0

ℓy) = L(y), meaning that N satisfies the promise and performs

20 Kinne & Van Melkebeek

the delayed computation of L at length mi at an input length one smaller than
before. However, Mi may not behave appropriately on inputs of the form 0ℓy;
in particular Mi may fail to satisfy the promise, in which case N would also
fail to satisfy the promise by performing the simulation. If Mi does not behave
appropriately, N does not need to consider Mi and could simply abstain from
the simulation. If Mi behaves appropriately on inputs of the form 0ℓy, it still
may fail to perform the delayed computation. In that case N has already
diagonalized against Mi at input length mi + ℓ and can therefore also abstain
from the simulation on inputs of the form 0ℓ−1y.

N has insufficient resources to determine on its own if Mi behaves appropri-
ately and performs the initial delayed computation. Instead, we give N one bit
of advice at input length mi + ℓ− 1 indicating whether Mi behaves appropri-
ately and performs the initial delayed computation at length n∗

i = mi+ℓ. If the
advice bit is 0, N acts trivially at this length by always rejecting inputs. If the
advice bit is 1, N performs the simulation so N(0ℓ−1y)/α = Mi(0

ℓy) = L(y).
If we give N one bit of advice, we should give Mi at least one advice bit as

well. Otherwise, the hierarchy result is not fair (and is trivial). Consider how
allowing Mi advice affects the construction. If there exists an advice string
b such that Mi/b behaves appropriately and Mi(0

ℓy)/b = L(y) for all y with
|y| = mi, we set N ’s advice bit for input length mi + ℓ − 1 to be 1, meaning
N should copy down the delayed computation from length mi + ℓ to length
mi +ℓ−1. Note, though, that N does not know for which advice b the machine
Mi/b appropriately performs the delayed computation at length mi + ℓ. N
has at its disposal a list of machines, namely Mi with each possible advice
string b, with the guarantee that at least one Mi/b behaves appropriately and
Mi(0

ℓy)/b = L(y) for all y with |y| = mi. With this list of machines as its
primary resource, N wishes to ensure that N(0ℓ−1y)/α = L(y) for all y with
|y| = mi while satisfying the promise and using small space.

Aside from the padding involved, N can appropriately perform the above
delayed computation when given a procedure that takes as input a string y of
length mi and list of randomized machines, and then appropriately recovers
L(y) as long as at least one of the input machines behaves appropriately and
computes L at length mi. We call the latter a recovery procedure for L at
length mi.

Definition 3.2 (recovery procedure). A two-sided error (respectively one- or
zero-sided error) recovery procedure for a language L at length m is a machine
Rec which takes as input z = (y, P1, ..., Pq), where y is a string of length m and
P1, ..., Pq are randomized Turing machines, such that the following holds. If

Space Hierarchy Results 21

there exists d ∈ {1, 2, ..., q} such that Pd(y
′) satisfies the promise of two-sided

error (respectively one- or zero-sided error) and Pd(y
′) = L(y′) on all inputs

y′ of length m then Rec on input z satisfies the promise of two-sided error
(respectively one- or zero-sided error) and Rec(z) = L(y).

Typically, the recovery procedure Rec at length m runs the machines Pj

on various inputs of length m. The difficulty is that Rec does not know a
priori which machine appropriately computes L at length m, and Rec must
appropriately compute L no matter the behavior of the remaining machines
that are given as input.

We point out that for Theorem 1.1, the recovery procedure may have two-
sided error, while for Theorem 1.3, the recovery procedure must have zero-sided
error even though it is only guaranteed a machine Pd that behaves appropriately
with one-sided error. Recovery procedures are the main technical ingredients
needed for our results on bounded-error randomized machines. We develop the
recovery procedures in Section 3.2 and Section 3.3 and complete the construc-
tion in Section 3.4.

3.2. Two-sided Error Recovery Procedure – Computation Tableau
Language. In this section we define the hard language L and recovery pro-
cedure for L that are used in Section 3.4 to complete the proof of Theorem 1.1.
When working against machine Mi over the interval of input lengths [ni, n

∗
i],

L must satisfy the following conditions. (1) If Mi behaves appropriately on in-
puts of length ni, then the complement of its behavior can be space-efficiently
reduced to L at some length mi ∈ [ni, n

∗
i]. (2) There exists a space-efficient

two-sided error recovery procedure for L at length mi.

Recall from Section 2.2 that given Mi, there is a deterministic Turing ma-
chine D such that for each input x, D(x) = 1 if Prr[Mi(x; r) = 1] ≥ 1

2
and

D(x) = 0 otherwise, D(x) uses 2as(|x|) time for some constant a that only
depends on the control characteristics of Mi, and D has a single bit in its con-
figuration at time step t = 2O(s(|x|)) that determines acceptance or rejection.
We use the computation tableau language for this deterministic machine D
(hereafter written COMPD) as the hard language L on the interval [ni, n

∗
i].

Definition 3.3 (COMPD). Given a deterministic machine D we define the
computation tableau language for D as follows. COMPD = {〈x, t, j〉 | the jth

bit in the machine’s configuration after the tth time step of executing D(x), is
equal to 1}.

We now present a space-efficient recovery procedure for COMPD.

22 Kinne & Van Melkebeek

Lemma 3.4. Let s = Ω(log n) be space-constructible and D a deterministic
time 2O(s(m)) Turing machine. Then COMPD has a two-sided error recovery
procedure at length m which uses space O(s(m)+log |z|+maxj(sPj

(m))) on in-
put z = (y, P1, ..., Pq), where y is a string of length m, P1, ..., Pq are randomized
Turing machines, and sPj

denotes the space usage of machine Pj.

We prove Lemma 3.4 in the rest of this section. Let y = 〈x, t, j〉 be an
instance of COMPD with |y| = m that we wish to compute. Recall that
we are guaranteed at least one machine Pd in the list of machines that com-
putes COMPD at length m with two-sided error. A natural way to determine
COMPD(y) is to consider each machine P in the list P1, ..., Pq one at a time
and design a test with the following properties.

(i) If Prr[P (y′; r) = COMPD(y′)] ≥ 2
3

for all y′ of length m, then the test
declares success with high probability (say with probability at least 8

9
).

(ii) If the test declares success with non-trivial probability (say greater than
1
9q

), then P gives the correct answer of COMPM (y) with high probability

(say greater than 9
16

).

We call a randomized machine P “good” for a given y′ if P (y′) is correct with
probability at least 9

16
and “bad” otherwise. Given a test with properties (i) and

(ii), the recovery procedure iterates through each machine in the list in turn.
We select the first machine P to pass testing, simulate P (y) some number of
times and output the majority answer, where the number of simulations of P (y)
is large enough to reduce the upper bound on P ’s error probability from 7

16
to

1
9
. By Theorem 2.7, a large enough constant number of simulations suffices.

Before describing the tests that achieve (i) and (ii), we first verify that given
such tests we in fact compute COMPD(y) with probability at least 2

3
. For the

procedure to error on input y, at least one of the following bad events has to
happen. (a) The machine Pd fails the test. (b) A machine P that is bad for y
passes the test. (c) A machine P that is good for y is selected, but the majority
vote of the simulations of P (y) gives the incorrect answer. Error condition (a)
occurs with probability at most 1

9
by (i). By (ii), each individual machine P

contributes at most probability 1
9q

to error condition (b), and a union bound

over all q machines shows that error condition (b) occurs with probability at
most 1

9
. By (ii) and using a large enough constant number of simulations

of P (y) as described above, (c) occurs with probability at most 1
9
. A union

bound over all three error conditions shows that given a testing procedure with
properties (i) and (ii), we fail to compute COMPD(y) with probability at most
1
9

+ 1
9

+ 1
9

= 1
3
.

Space Hierarchy Results 23

Input: y = 〈x, t, j〉 of length m; machines P1, P2, ..., Pq

Output: COMPD(y)
(1) foreach d = 1..q Try using Pd to compute COMPD(y)
(2) foreach t′ and j′ Bounded-error checks
(3) if #accept runs of τ simulations of Pd(〈x, t′, j′〉) lies in [3

8
, 5

8
]

then goto (1) Pd fails
(4) foreach j′ Check base case – start configuration
(5) A← majority of τ simulations of Pd(〈x, 0, j′〉)
(6) if A 6= j′th bit of start configuration
(7) then goto (1) Pd fails
(8) foreach t′ > 0 and j′ Local consistency checks
(9) bit j′ in time step t′ depends on bits j′1, j

′
2, ..., j

′
k in time

step t′ − 1
(10) foreach c = 1, 2, ..., k
(11) Aj′c,t

′−1 ← majority of τ simulations of Pd(〈x, t′ − 1, j′c〉)
(12) Aj′,t′ ← majority of τ simulations of Pd(〈x, t′, j′〉)
(13) if Aj′,t′ , Aj′1,t′−1, Aj′2,t′−1, ..., Aj′k,t′−1 violate transition func-

tion of D
(14) then goto (1) Pd fails
(15) Pd passed all tests
(16) return majority of O(1) simulations of Pd(〈x, t, j〉)
(17) return 0 No machines passed testing

Figure 3.2: Pseudo-code for the two-sided error recovery procedure for the
computation tableau language. The list of machines is guaranteed to contain
at least one computing COMPD at length m with two-sided error in space
s(m). Lines 2, 4, and 8 loop over all t′ and j′ valid for D using 2O(s(m)) time
and space, and indices t, j, t′, and j′ are padded so that all instances of COMPD

of interest are of length m. τ is set to a large enough function that is O(s+log q)
as described in the text.

The technical heart of the recovery procedure is the testing procedure to
select a good machine. This test is based on the local checkability of compu-
tation tableaux – the jth bit of the configuration of D(x) in time step t > 0 is
determined by a constant number of bits from the configuration in time step
t−1, each of which can be determined within small space. For each bit position
(t, j) of the tableau with t > 0, this gives a local consistency check – make sure
that the value P claims for 〈x, t, j〉 is consistent with the values P claims for

24 Kinne & Van Melkebeek

each of the bits of the tableau that this bit depends on. We implement this
intuition as follows.

1. We test that for all positions in the tableau on input x, P ’s acceptance
probability stays bounded away from 1

2
.

More specifically, for each possible t′ and j′, we simulate P (〈x, t′, j′〉) a
number τ times (to be determined below) and fail the test if the fraction of
accepting computation paths of P (〈x, t′, j′, 〉) lies in the range [3/8, 5/8].

2. We explicitly check the initial configuration.

Precisely, for each j′, we simulate P (〈x, 0, j′〉) τ times and fail the test if
the majority output is not consistent with the initial configuration of D
on input x.

3. We run the consistency check for all positions in the tableau with t′ > 0.

That is, for each possible t′ > 0 and j′, we do the following. Let j′1, ...,
j′k be the bits of the configuration in time step t′ − 1 that bit j′ in time
step t′ depends on. We simulate each of P (〈x, t′, j′〉), P (〈x, t′−1, j′1〉), ...,
P (〈x, t′ − 1, j′k〉) τ times and fail the test if the majority values of these
simulations are not consistent with the transition function of D.

We argue that this series of tests satisfies (i) and (ii) from above. We first
consider (i), so we assume a machine P that computes COMPD with probability
at least 2

3
on all y′ of length m. Then the Chernoff bound (Theorem 2.7) tells

us that for τ independent executions of P on a given input y′, the probability
that at least 3

8
of the trials gives an incorrect answer is exponentially small in

τ . By taking a union bound over all 2O(s(m)) times that a value of the form
P (y′) is needed in all tests, we can use τ a large enough linear function in s to
ensure that the following occurs with probability at least 8

9
. P passes test 1,

and tests 2 and 3 obtain the majority value for P (y′) each time this value is
needed in these tests. As the majority value of P (y′) is correct for each y′, P
passes tests 2 and 3 in this case, and we have proved (i).

Now consider (ii). Given any randomized machine P , we can associate a
computation tableau that P claims for the execution of D(x) with it. Namely,
for each t′ and j′, if Prr[P (〈x, t′, j′〉) = 1] ≥ 1

2
then P claims the j′th bit in D’s

configuration after the t′th time step is equal to 1. Intuitively, if P passes test
1 with non-trivial probability, it must have error bounded away from half by
some non-trivial amount; in this case with high probability the majority values
of P (y′) are obtained for each query of P (y′) in tests 2 and 3, allowing these

Space Hierarchy Results 25

tests to correctly determine the correctness of the tableau claimed by P with
high probability.

To make this precise, suppose P outputs its majority value with probability
1
2

+ δ on some tableau bit, for some δ. By Theorem 2.7, the fraction of τ
trials on which P outputs its majority value lies in the range [1

2
, 1

2
+ 2δ] with

probability at least 1−2eτδ2/4. For δ = 1
16

, we see that P fails test 1 with all but
exponentially small probability in τ . By taking τ a large enough logarithmic
function in q, if P passes test 1 with probability at least 1

9q
overall, then for each

tableau position P outputs its majority value with probability at least 1
2

+ 1
16

.
In this case, by taking τ a large enough function linear in s and logarithmic
in q, a union bound ensures that with probability at least 1 − 1

9q
the testing

procedure obtains the correct majority output of P on all queries to P in tests
2 and 3 and correctly determines if P ’s majority outputs are correct on the
tableau bits. Thus if P passes test 1 with probability at least 1

9q
and tests 2

and 3 with probability at least 1
9q

, its majority values are correct on all tableau

bits and it has error at most 1
16

, so we have shown (ii).

Consider the space usage of the recovery procedure, given in pseudo-code
in Section 3.2. The counter for line (1) uses O(log q) space. The counters for
lines (2), (4), and (8) use O(s(m)) space because D is a time 2O(s(m)) machine.
The counters of lines (3), (5), (11), and (13) use O(s(m) + log q) because τ =
O(s(m)+log q) and the simulations of these lines use maxj(sPj

(m)) space. Lines
(9) and (13) are space efficient because tableau bit 〈x, t′, j′〉 depends on con-
stantly many bits from the previous row, which can be determined and checked
space-efficiently. Overall the space usage is O(s(m) + log q + maxj(sPj

(m))).

3.3. Zero-sided error Recovery Procedure – Configuration Reacha-
bility. In this section we define the hard language L and recovery procedure
for L that are used in Section 3.4 to complete the proof of Theorem 1.3. When
working against machine Mi over the interval of input lengths [ni, n

∗
i], L must

satisfy the following. (1) If Mi behaves appropriately on inputs of length ni,
then the complement of its behavior can be space-efficiently reduced to L at
some length mi ∈ [ni, n

∗
i]. (2) There exists a space-efficient zero-sided error

recovery procedure for L at length mi (even when the recovery procedure is
only guaranteed a one-sided error machine Pd that behaves appropriately).

To determine whether Pr[Mi(x) = 1] < 1
2

for Mi a one-sided error machine
that uses s(n) space, we can ask whether the unique accepting configuration
can be reached within 2as(|x|) steps from the unique start configuration when
Mi executes on input x, where a is a constant that only depends on the control

26 Kinne & Van Melkebeek

characteristics of Mi. We use the configuration reachability language for Mi

as the hard language L. As the recovery procedure works for any randomized
machine M , we describe the recovery procedure for CONFIGM , defined as
follows.

Definition 3.5 (CONFIGM). Given a randomized machine M , we define
the configuration reachability language of M as follows. CONFIGM =
{〈x, c1, c2, t〉 | on input x, if M is in configuration c1, then configuration c2

is reachable within t time steps}.

We now present a space-efficient recovery procedure for CONFIGM .

Lemma 3.6. Let s = Ω(log n) be space-constructible and M a space O(s(m))
randomized machine that always halts. Then CONFIGM has a zero-sided er-
ror recovery procedure at length m, which works even when only guaranteed
a machine Pd which appropriately computes CONFIGM with one-sided er-
ror. The procedure uses space O(s(m) + log |z| + maxj(sPj

(m))) on input
z = (y, P1, ..., Pq), where y is a string of length m, P1, ..., Pq are randomized
Turing machines, and sPj

denotes the space usage of Pj.

We prove Lemma 3.6 in the rest of this section. Let y = 〈x, c1, c2, t〉 be an
instance of CONFIGM with |y| = m that we wish to compute. As we need
to compute CONFIGM with zero-sided error, we can only output a value of
“yes” or “no” if we are sure this is correct. The outer loop of our recovery
procedure is the following: cycle through each machine P in the list of ma-
chines P1, ..., Pq, and execute a search procedure that attempts to use P to
verify whether configuration c2 is reachable from configuration c1 in t steps.
The search procedure may output “yes”, “no”, or “fail”, and should have the
following properties:

(i) If P computes CONFIGM at length m with one-sided error, the search
procedure comes to a definite answer (“yes” or “no”) with probability at
least 1/2.

(ii) Whenever the search procedure comes to a definite answer, it is always
correct, no matter P ’s behavior.

We cycle through all machines in the list, and if the search procedure ever out-
puts “yes” or “no”, we halt and output that response. If the search procedure
fails for all machines in the list, we output “fail”. Given a search procedure
with properties (i) and (ii), the correctness of the recovery procedure follows

Space Hierarchy Results 27

Input: y = 〈x, c1, c2, t〉 of length m; machines P1, P2, ..., Pq

Output: CONFIGM(y)
(1) if c1 = c2 then Output “yes” and halt Trivial cases
(2) else if t = 0 then Output “no” and halt
(3) foreach d = 1..q Try using Pd to compute CONFIGM(y)
(4) k0 ← 1 Number of configurations w/in distance 0 of c1

(5) for ℓ = 1 to t Compute kℓ given kℓ−1

(6) kℓ ← 0
(7) foreach configuration c Is c w/in distance ℓ of c1?
(8) k′

ℓ−1 ← 0 Re-experience all configurations-
(9) foreach configuration c′ -within distance ℓ− 1
(10) if V erify(〈x, c1, c

′, ℓ− 1〉, Pd) = “yes”
(11) if M(x) transitions from c′ to c in ≤ 1 time step
(12) c is within distance ℓ of c1

(13) if c = c2 then return “yes”
(14) else kℓ ← kℓ + 1, and Try next c (line 7)
(15) else
(16) k′

ℓ−1 ← k′
ℓ−1 + 1

(17) if k′
ℓ−1 6= kℓ−1

(18) Failed to experience all configs w/in distance ℓ− 1
(19) if d < q then Try next d (line 3) Pd fails
(20) else return “fail” All machines have failed
(21) return “no” kt computed correctly and c2 not found

Figure 3.3: Pseudo-code for the zero-sided error recovery procedure for the con-
figuration reachability language. The list of machines is guaranteed to contain
at least one computing CONFIGM at length m with one-sided error in space
s(m). Configurations c1, c2, and c′ and time values t and ℓ− 1 are padded so
that all instances of CONFIGM of interest are of length m. The code for Verify
used on line 10 is given in Section 3.3.

from the fact that we are guaranteed that one of the machines in the list of
machines correctly computes CONFIGM at length m.

The technical heart of the recovery procedure is a search procedure with
properties (i) and (ii). Let P be a randomized machine under consideration, and
y = 〈x, c1, c2, t〉 an input of length m we wish to compute. Briefly, the main idea
is to mimic the proof that NL=coNL (Immerman 1988; Szelepcsényi 1988) to
verify reachability and un-reachability, replacing nondeterministic guesses with

28 Kinne & Van Melkebeek

simulations of an error-reduced version of P . If P computes CONFIGM at
length m with one-sided error, we can reduce P ’s error to a point that we have
correct answers to all nondeterministic guesses with high probability, meaning
property (i) is satisfied. Property (ii) follows from the fact that the algorithm
can discover when incorrect nondeterministic guesses have been made. For
completeness, we explain how we make use of the nondeterministic algorithm
of Immerman (1988) and Szelepcsényi (1988) in the current setting. The search
procedure works as follows.

1. Let k0 be the number of configurations reachable from c1 within 0 steps,
i.e., k0 = 1.

2. For each value ℓ = 1, 2, ..., t, compute the number kℓ of configurations
reachable within ℓ steps of c1, using only the fact that we have remem-
bered the value kℓ−1 that was computed in the previous iteration.

3. While computing kt, experience all of the reachable configurations to see
if c2 is among them, for t = 2O(s(m)) the maximum amount of time that
M can take on inputs of length m.

Consider the portion of the second step where we must compute kℓ given
that we have already computed kℓ−1. We accomplish this in lines 6-20
of Section 3.3 by cycling through all configurations c and for each one re-
experiencing all configurations reachable from c1 within ℓ−1 steps and verifying
whether c can be reached in at most one step from at least one of them. To
re-experience configurations reachable within distance ℓ−1, we try all possible
configurations and query P to verify a nondeterministic path to each. The
verification of a nondeterministic path is given in Section 3.3. To check if c
is reachable within one step of a given configuration, we use the transition
function of M . If we fail to re-experience all kℓ−1 configurations or if P gives
information inconsistent with the transition function of M at any point we
consider the search for reachability/un-reachability failed with machine P .

We now describe why this procedure satisfies properties (i) and (ii) from
above. First consider (i), so we assume a randomized machine P that com-
putes CONFIGM at length m with one-sided error. By using a large enough
number O(s) of trials each time we simulate P , the error reduction for one-
sided error algorithms (Section 2.2.1) along with a union bound over the total
number of queries to P ensures that with probability at least 1/2 we get cor-
rect answers each time we use line (8) of Section 3.3. This implies that with
probability at least 1/2, V erify functions as intended each time it is called
(meaning V erify(y′, P) returns “yes” if y′ ∈ CONFIGM and “fail” otherwise).

Space Hierarchy Results 29

Verify
Input: y = 〈x, c0, c

′, t〉 with |y| = m; machine P
Output: “yes” if by querying P it can be verified that y is in
CONFIGM , “fail” otherwise
(1) if c0 = c′ then return “yes” Trivial cases
(2) else if t = 0 then return “fail”
(3) c← c0 Current configuration on path from c0 to c′

(4) for j = t− 1 down to 0 Try to move w/in distance j of c′

(5) foreach configuration c′′

(6) if M(x) transitions from c to c′′ in ≤ 1 time step
(7) if c′′ = c′ then return “yes” Have already reached c′

(8) else if P (〈x, c′′, c′, j〉) outputs 1 on any of O(s) trials
(9) c← c′′, try next j (line 4) Now c is one step closer
(10) return “fail” Unable to move one step closer to c′

(11) return “fail” After t steps, have not reached c′

Figure 3.4: Pseudo-code for the verification subroutine used in the zero-sided
error recovery procedure of Section 3.3. If configuration c′ is within distance
t of configuration c0 and P appropriately computes CONFIGM at length m,
then with high probability a path is verified and “yes” is returned. “Yes” is
only returned when a path of length at most t has been verified. Configurations
c0, c′, and c′′, as well as time values t and j are padded so that all queries to
CONFIGM of interest are of length m.

Therefore for each configuration c and ℓ = 1, 2, ..., t, the recovery procedure
does re-experience all configurations reachable within ℓ− 1 steps from c1 when
determining whether c is reachable within ℓ steps, and the consistency check
of line (17) passes each time it is encountered while testing P . Thus with
probability at least 1/2 P comes to a definite answer, proving (i).

Now consider (ii), so we assume a definite answer either “yes” or “no” is
reached while testing some machine P , and therefore the consistency check of
line (17) must have passed each time it was encountered. This means that
for each configuration c and ℓ = 1, 2, ..., t, the recovery procedure did in fact
re-experience all configurations reachable within at most ℓ − 1 steps from c1

when determining if c is reachable within ℓ steps. For c = c2 and ℓ = t, we
conclude that the recovery procedure determined correctly if c2 is reachable
from c1 within at most t steps, proving (ii).

30 Kinne & Van Melkebeek

Consider the space usage of the recovery procedure, given in pseudo-code
in Section 3.3 and Section 3.3. Many of the lines of these figures consist of
dealing with the configurations of M – checking whether two configurations are
the same or adjacent, storing copies of the configurations, and iterating over all
configurations. These tasks use O(s(m)) space because M is a space O(s(m))
machine. Line (2) of Section 3.3 uses O(log q) space. Line (8) of Section 3.3 uses
maxj(sPj

(m)) + O(s(m)) space, with the first term from simulating a machine
P and the second term from constructing s and keeping a counter to simulate
P O(s) times. Overall the space usage is O(s(m) + log q + maxj(sPj

(m))).

3.4. The Final Construction. We now complete the construction – which
we began developing in Section 3.1 and is illustrated in Section 3 – used to
prove Theorem 1.1 and Theorem 1.3. For Theorem 1.1, we use COMPD as
the hard language L and make use of the two-sided error recovery procedure
for COMPD given in Section 3.2. For Theorem 1.3, we use CONFIGM as the
hard language L and make use of the zero-sided error recovery procedure for
CONFIGM (that works even when only guaranteed a machine Pd that behaves
appropriately with one-sided error) given in Section 3.3.

We allocate an interval of input lengths [ni, n
∗
i] on which to diagonalize

against Mi, which is allowed a(n) = min(s(n), n) bits of advice at input length
n. On an input x of length ni, N reduces the complement of Mi(x) to an
instance of L of length mi using some reduction function f (described along
with L in Section 3.2 and Section 3.3). The languages L are paddable so we
can assume the reduction function f produces instances of L of the same length
mi for all x of length ni. n∗

i is chosen large enough so that L at length mi can
be deterministically computed in space s(n∗

i). For the hard languages we use,
n∗

i = 2c·mi for a suitable absolute constant c suffices. N at length n∗
i performs

the delayed computation: N(0ℓy) = L(y) where |y| = mi and ℓ = n∗
i −mi.

For input length n = mi +ℓ−1, N ’s one bit of advice αn is set to indicate if
there exists an advice string causing Mi to appropriately perform the delayed
computation of L from input length mi to input length n + 1. If αn = 1,
N/α uses the space-efficient recovery procedure for L to perform the delayed
computation of L on padded inputs of length n as follows. On input 0n−miy, N
removes the padding and executes the recovery procedure at length mi on input
z = 〈y, {Pb}〉, where b ranges over all possible advice strings for Mi at length
n + 1 and Pb(y

′) acts in the following way. Pb(y
′) simulates Mi(0

n+1−miy′)/b
as long as the latter uses at most s(n + 1) space, outputting a result if one
is reached and arbitrarily rejecting otherwise. Note that if Mi/b appropriately
performs the delayed computation of L to length n+1 then the space restriction

Space Hierarchy Results 31

Diagonalizing machine N
Input: (x, α|x|), let n denote |x|
(1) if αn = 0 then return 0
(2) i← 0, n0 ← 0, n∗

0 ← 0
(3) while n > n∗

i

(4) i← i + 1, ni ← n∗
i−1 + 1,

(5) mi ← |f(Mi/b, y)| for |y| = ni and |b| = a(ni), n∗
i ← 2c·mi

(6) switch
(7) case n = n∗

i and x = 0n∗
i −miy for some y

(8) deterministically compute and return L(y)
(9) case n ∈ [mi, n

∗
i − 1] and x = 0n−miy for some y

(10) return Rec(y, {Pb|b ∈ {0, 1}
a(n+1)})

(11) case n = ni and x = 0n−a(n)b for some b
(12) y = f(Mi/b, x)
(13) return N(y)/α
(14) else
(15) return 0

Figure 3.5: Pseudo-code for the diagonalizing machine N that witnesses
Theorem 1.1 and Theorem 1.3. See Section 3.4 for a description of N in words.

has no effect and Pb falls within the model and computes L at length mi using
space O(s(n+1)). The reason we break off the computation of Mi(0

n+1−miy′)/b
when it uses more than s(n + 1) space is to make sure the recovery procedure
runs in space O(s(n+1)). We will get back to this in the analysis of Section 3.5.

By the correctness of the recovery procedure, if αn = 1, then N/α performs
the delayed computation with bounded error on padded inputs of length n. If
the advice bit is 0, N/α acts trivially at input length n by rejecting immediately.

We repeat the same process on smaller and smaller padded inputs. We
reach the conclusion that either (a) there is a largest input length n ∈ [mi +
1, n∗

i] where for no advice string b, Mi/b appropriately performs the delayed
computation of L at length n; or (b) N/α correctly computes L on inputs of
length mi. If (a) is the case, N/α performs the delayed computation at length
n whereas for each b either Mi/b does not behave appropriately at length n or
it does but does not perform the delayed computation at length n. In either
case, N/α has diagonalized against Mi/b for each possible b at length n. N ’s
remaining advice bits for input lengths [ni, n− 1] are set to 0 to indicate that
nothing more needs to be done, and N/α immediately rejects inputs in this

32 Kinne & Van Melkebeek

range. If (b) is the case N/α diagonalizes against Mi/b for all advice strings
b at length ni by acting as follows. On input xb = 0ni−|b|b, N reduces the
complement of the computation Mi(xb)/b to an instance y of L of length mi

and then simulates N(y)/α, so N(xb)/α = N(y)/α = L(y) = ¬Mi(xb)/b.
We have now completed the construction used for Theorem 1.1 and

Theorem 1.3. Pseudo-code for the diagonalizing machine N/α described in
this section is given in Section 3.4.

3.5. Analysis. We now explain how we come to the parameters given in the
statements of Theorem 1.1,Theorem 1.3, Corollary 1.2 and Corollary 1.4.

3.5.1. Theorem 1.1 and Theorem 1.3. We first consider the space us-
age of our constructions when the diagonalizing machine N/α is working
against space s(n) randomized machines. The base construction is given in
Section 3.4 and the recovery procedures are given in Section 3.2, Section 3.3,
and Section 3.3. The recovery procedure for each hard language (COMPD in
the case of Theorem 1.1 and CONFIGM in the case of Theorem 1.3) uses space
O(s(m)+ log q +maxj(sPj

(m))) when trying to solve instances of the hard lan-
guage of length m. In line (10) of Section 3.4, Pb(y

′) simulates Mi(0
n+1−miy′)/b

as long as the latter uses s(n + 1) space, and b ranges over all possible ad-
vice strings that Mi could have at length n + 1. By choosing a(n) ≤ s(n)
for each length n, we thus ensure that the recovery procedure in line (10) uses
O(s(mi)+s(n+1)+s(n+1)) space, which is O(s(n+1)) because s is monotone
and mi ≤ n+1 for these n. We point out that we need the space-constructibility
of s to clock the space usage of the simulations of Mi/b.

Using the facts that s(n) = Ω(log n) and the hard languages can be decided
in O(n) space, n∗

i is chosen large enough so line (8) of Section 3.4 uses at most
s(n) space, which is at most s(n + 1) by the monotonicity of s. Consider
line (12). The reductions to the hard languages are very space-efficient. For
COMPD we can use a fixed deterministic machine D that takes the particular
machine Mi as an extra parameter; the reduction also employs some padding
involving the space bound s to ensure all instances map to the same input length
mi. As s is space-constructible, the padding can be achieved in O(s(ni)) space.
The reduction for CONFIGM can similarly be realized in O(s(ni)) space. For
line (13) N calls itself on y. Together with the space usage of line (12) and the
monotonicity of s, N ’s space usage at length ni is big-O of its space usage at
length mi.

The remaining tasks of N , such as computing the interval [ni, n
∗
i] that a

given input length n lies within, can be achieved with O(s(n + 1)) space. We
point out that storing the value of n∗

i in line (5) may take more space. However,

Space Hierarchy Results 33

all that is needed here is determining whether n is larger than n∗
i , and this can

be done with O(log n) space without storing n∗
i .

We have shown that N ’s space usage is O(s(n + 1)) for input lengths n ∈
[mi, n

∗
i]. For input length ni, N ’s space usage is big-O of its space usage at

length mi, namely O(s(mi + 1)). For the case of Theorem 1.1, we reduce to
COMPD, and the size mi of the instance of COMPD we reduce to is ni +
O(s(ni)). For the case of Theorem 1.3, we reduce to CONFIGM , and mi is also
of size ni + O(s(ni)). In both cases, the space usage of N on inputs of length
ni is O(s(ni + O(s(ni)))). By the monotonicity of s, the space usage of N on
all input lengths n is O(s(n + O(s(n)))). We point out that we chose COMPD

and CONFIGM as hard languages over other natural candidates (such as the
circuit value problem for Theorem 1.1 and st-connectivity for Theorem 1.3)
because COMPD and CONFIGM reduce the blowup in input size incurred by
the reductions while still allowing for space-efficient recovery procedures.

The constants in both big-O terms of O(s(ni +O(s(ni)))) – N ’s space usage
at input length ni – come from a variety of sources throughout the construction
including reducing to the hard languages as well as simulating and clocking the
space usage of Mi/b. It can be verified that for each of these the constant
factor incurred only depends on s and the control characteristics of Mi. In
particular, the constant factor is the same for all infinitely many appearances
of machines equivalent to Mi that appear in the computable enumeration of
randomized Turing machines. If s′(n) = ω(s(n + as(n))) for all constants a, N
operating in space s′(n) eventually encounters Mi on an interval [ni, n

∗
i] where

N has enough space to successfully diagonalize against Mi. If N does not yet
have enough space, its advice bits are set to 0 on the entire interval. Note that
this use of advice obviates the need for s′(n) to be space constructible.

Now consider the amount of advice a(n) that the smaller space machines
can be given at length n. As discussed above, a(n) is chosen to be at most s(n)
to ensure the recovery procedure operating at length n uses at most s(n + 1)
space, for n ∈ [mi, n

∗
i −1]. Also, to complement Mi for each advice string it can

receive at length ni, we need at least one input at length ni for each of these
advice strings. Thus, the amount of advice that can be allowed is min(s(n), n).

3.5.2. Corollary 1.2 and Corollary 1.4. We now describe modifications
to the construction that yield Corollary 1.2 and Corollary 1.4. Recall from
above that when the diagonalizing machine N works against machine Mi over
the interval of input lengths [ni, n

∗
i], the space usage of N for n ∈ [mi, n

∗
i] is

O(s(n + 1)), which is already efficient enough for the corollaries.

For input length ni, N ’s space usage is O(s(mi +1)) for mi = ni +O(s(ni))

34 Kinne & Van Melkebeek

where the constants in both big-O terms depend only on s and the control
characteristics of Mi. Since we now have a monotone space bound s(n) = O(n)
we can assume that mi = a · ni and that N ’s space usage at input length ni is
at most a′ · s(mi) for constants a and a′ depending only on s and the control
characteristics of Mi.

If the space bound s(n) satisfies s(a · n) = O(s(n)) for all constants a then
the construction as given in Section 3.4 already suffices to prove the corollaries.
If s is a space bound where s(a ·n) can be much larger than s(n), the basic idea
is to examine a number of candidate input lengths n′

i until finding one where
s(a · n′

i) is not much larger than s(n′
i). Specifically, if ni is the first potential

input length for working against machine Mi, we consider input lengths n′
i of the

form n′
i = akni for k = 0, 1, 2, ..., and select the first one where s(an′

i) ≤ ds(n′
i)

for some fixed constant d. Such an n′
i must exist with d = a3 for some k ≤ log ni

log a

for sufficiently large ni; otherwise we would have that s(n2
i) > n3

i s(ni), which
contradicts the fact that s(n) = O(n).

To prove Corollary 1.2 and Corollary 1.4, we modify the construction as
follows. When working against machine Mi, let a be a constant depending
only on s and the control characteristics of Mi so that the behavior of Mi

at length n reduces to an instance of the hard language of length a · n. The
diagonalizing machine N (1) allocates an interval of input lengths [ni, n

∗
i] with

n∗
i = 2c·a·n2

i for the absolute constant c mentioned in Section 3.4, (2) chooses the
first input length n′

i ∈ [ni, n
2
i] such that s(an′

i) ≤ a3s(n′
i), and (3) carries out

the construction as described in Section 3.4 with [n′
i, n

∗
i] the interval of input

lengths. We have guaranteed that the space usage of N on input length n′
i is

now O(s(n′
i)) where the constant in the big-O depends only on s and the control

characteristics of Mi. The only extra space usage incurred is determining the
appropriate n′

i ∈ [ni, n
′2
i], which can be done in space O(s(n)) for all input

lengths n ∈ [ni, n
∗
i].

3.5.3. Additional Remarks. We note that results corresponding to
Theorem 1.1 and Corollary 1.2 also hold for space-bounded quantum machines:
COMPD can be used as the hard language (a space s(n) quantum machine can
be simulated deterministically using 2O(s(n)) time), and the space-efficient re-
covery procedure for COMPD follows through for quantum machines. A key
component of the latter is error reduction – requiring taking the majority of
2O(s(n)) simulations of a space O(s(n)) machine while using O(s(n)) space –
which can be done on space-bounded quantum machines.

Finally, recall that Theorem 1.3 and Corollary 1.4 give separations between
zero- and one-sided error machines. These trivially imply separation results for

Space Hierarchy Results 35

zero-sided error machines (i.e., where N/α is a zero-sided error machine differ-
ing from space s zero-sided error machines Mi/β) with the same parameters.
Conversely, we point out that in our setting a separation result for zero-sided
error machines immediately implies a separation between zero- and one-sided
error machines, although with a slight loss in parameters. Indeed, suppose
that for appropriate choices of s′ and s there is a zero-sided error machine N
using space s′(n) and one bit of advice that computes a language different than
any zero-sided error machine using s(n) space and min(s(n), n) bits of advice,
but that all languages decided by zero-sided error machines using s′(n) space
and one bit of advice can be decided by one-sided error machines using s(n)
space and a(n) bits of advice, for some function a(n). In particular, both the
language decided by N/α and its complement can be decided by one-sided er-
ror machines using s(n) space and a(n) bits of advice. Consider the following
algorithm for computing the same language as that of N/α: (1) execute the
one-sided error algorithm for deciding N/α which uses s(n) space and a(n) bits
of advice, and output “yes” if this algorithm outputs “yes”, (2) execute the
one-sided error algorithm for deciding the complement of N/α which uses s(n)
space and a(n) bits of advice, and output “no” if this algorithm outputs “yes”,
(3) otherwise output “fail”. Given the correct advice strings for the algorithms
in (1) and (2), this is a zero-sided error algorithm for deciding N/α; it uses
s(n) space and 2a(n) bits of advice. This contradicts the assumed hardness of
N/α against zero-sided error machines provided 2a(n) ≤ min(s(n), n), and we
conclude that there is a language computable by zero-sided error algorithms
using s′(n) space and one bit of advice that is not computable by one-sided
error algorithms using s(n) space and 1

2
min(s(n), n) bits of advice. Note that

the notion of advice we use – a zero-sided error algorithm is only required to
maintain zero-sided error when given the correct advice string – is critical for
this argument to hold. Also note that the maximum amount of advice that
can be handled with this argument is a factor of two smaller than that given
by Theorem 1.3.

4. Separation Results for Generic Semantic Models

In this section, we prove our separation results for generic semantic models
(Theorem 1.5, Theorem 1.6, and Theorem 1.7). The basic construction is the
same for each, with only the analysis differing. We first review delayed diago-
nalization on syntactic models (Section 4.1), give the construction that adapts
delayed diagonalization to semantic models with the use of advice (Section 4.2),
analyze the construction for the particular case of each theorem (Section 4.3),

36 Kinne & Van Melkebeek

and finally distill the properties of a semantic model that are needed for our
constructions to hold (Section 4.4).

4.1. Delayed Diagonalization on Syntactic Models. As the basic con-
struction is an adaptation of delayed diagonalization (Žàk 1983) to handle
advice, we first review delayed diagonalization on syntactic models. We wish
to demonstrate a machine N using slightly more than s(n) space which differs
from all machines that use s(n) space. For each machine Mi, N allocates an
interval of input lengths [ni, n

∗
i] on which to diagonalize against Mi. The con-

struction consists of two main parts: (1) a delayed complementation at length
n∗

i of Mi’s behavior at length ni, and (2) a scheme to copy this behavior down
to smaller and smaller padded input lengths all the way to ni. For (1), we
choose n∗

i large enough so that N has sufficient space at length n∗
i to comple-

ment the behavior of Mi at length ni. N performs a delayed complementation
by ensuring that N(0n∗

i −nix) = ¬Mi(x) for x with |x| = ni. For (2), on inputs
of the form 0jx with |x| = ni and 0 ≤ j < n∗

i − ni, N simulates Mi(0
j+1x)

while Mi uses at most s(n) space, outputs a value if Mi does, and outright
rejects if Mi uses more than s(n) space. Suppose that Mi is a machine which
uses at most s(n) space and computes the same language as N on all input
lengths in [ni, n

∗
i]. This assumption and N ’s definition imply the following set

of equalities for every input x of length ni:

Mi(x) = N(x) = Mi(0x) = N(0x) = Mi(0
2x) = ...

= Mi(0
n∗

i −nix) = N(0n∗
i −nix) = ¬Mi(x).

As Mi(x) must take some definite value, we have reached a contradiction. Ei-
ther Mi differs from N on some input of length in [ni, n

∗
i], or Mi uses more than

s(n) space. An illustration of delayed diagonalization is given in Section 4.1.

4.2. Delayed Diagonalization on Semantic Models. Consider the case
of a semantic model of computation, defined in Section 2.3, where N must use
not much more than s(n) space, satisfy the promise on all inputs, and differ
from each machine Mi which behaves appropriately, defined by the following
generalization of Definition 3.1.

Definition 4.1 (appropriate behavior of machines in a semantic model).
Fix a semantic model of computation and a space bound s(n). A machine
Mi from the underlying syntactic model with advice sequence β behaves
appropriately if Mi/β satisfies the promise of the model and uses at most s(n)
space on all inputs.

Space Hierarchy Results 37

...x 0n∗

i
−nix

...

Input
...ni ni + 1 n∗

i − 1 n∗
i

Length

...x 0n∗

i
−nix

N

Mi

Figure 4.1: Illustration of delayed diagonalization on a syntactic model of com-
putation. The solid arrows indicate that on inputs of the form 0jx, N simulates
Mi(0

j+1x). The dashed line indicates that on input 0n∗
i −nix, N outputs the

complement of Mi(x).

We keep a few specific semantic models in mind during the development and
analysis of the construction – Arthur-Merlin games for Theorem 1.5, and unam-
biguous machines for the stronger separations of Theorem 1.6 and Theorem 1.7.
A reader unfamiliar with these semantic models may instead keep in mind
bounded-error randomized machines. In fact, the ensuing construction and
analysis apply to any semantic model of computation that satisfies some mod-
est requirements. Rather than listing these requirements ahead of time, we
figure out what properties are needed of a semantic model afterward, namely
in Section 4.4.

The delayed diagonalization construction given in Section 4.1 fails for non-
syntactic models: it may be the case that Mi breaks the promise on inputs of the
form 0jx, and N would also break the promise by performing the simulations
described above. However, if Mi breaks the promise on some input, then N
does not need to consider Mi and may simply abstain from working against Mi.
We give N one bit of advice at each input length to indicate if performing the
simulations at that length would cause N to break the promise. If the advice
bit is 1, then N/α performs the simulation. If the advice bit is 0, N/α abstains
by immediately rejecting.

As N is allowed one bit of advice, Mi should also be allowed at least one
advice bit. With Mi allowed one bit of advice, N now has two different machines
at each input length that it is concerned with – Mi/0 and Mi/1. N should
perform a given simulation if at least one of these behaves appropriately and
copies N ’s behavior. This can be done by giving N two advice bits – one
each to indicate whether each of Mi/0 and Mi/1 behaves appropriately and
copies N ’s behavior on inputs of one larger length. In general, if Mi is allowed
a(n) bits of advice, N would require 2a(n+1) advice bits to specify whether

38 Kinne & Van Melkebeek

Mi with each advice string behaves appropriately and copies N ’s behavior on
inputs of one larger length. The construction of Section 3 avoided this problem
by considering a particular behavior that Mi might have – computing a hard
language – and using this behavior to handle Mi with many advice strings at
once. This entailed a recovery procedure for the hard language, which we do
not know how to achieve for generic semantic models. In this section, we use
a different approach that does apply to generic semantic models, which can be
thought of as a copying scheme that allows N to spread the 2a(n+1) advice bits
needed to appropriately simulate Mi at a given length over many input lengths.

Consider the simulations of Mi at length n∗
i which N is responsible for

copying to smaller padded inputs. We would like to give N one advice bit for
each of Mi’s possible advice strings at length n∗

i , indicating for each whether
Mi with that advice string behaves appropriately. We spread these advice
bits across multiple input lengths. That is, for each of Mi’s possible advice
strings b at length n∗

i , we allocate a distinct slightly smaller input length from
which N is responsible for simulating Mi/b at length n∗

i . For the input length
responsible for advice string b, N ’s advice bit is set to indicate if Mi/b behaves
appropriately at length n∗

i . If the advice bit is 1, N/α performs the simulation
of Mi/b at length n∗

i . If the advice bit is 0, N abstains by immediately rejecting.
Now N/α satisfies the promise on all inputs, and for each advice string that
causes Mi to appropriately copy N ’s behavior at length n∗

i , N/α copies that
behavior to a slightly smaller input length.

As with delayed diagonalization on syntactic models, we repeat the same
process to copy the behavior at length n∗

i to smaller and smaller inputs. This
is best visualized by a tree of input lengths with n∗

i being the root node. The
tree node corresponding to n∗

i has one child input length for each possible
advice string at length n∗

i as described above. Each of these input lengths is
also considered a node of the tree of input lengths with as many children as
different advice strings at that length. This is repeated until reaching a level
of leaf nodes. The tree of input lengths is illustrated in Section 4.2. We now
give more details on the construction.

First consider an internal node corresponding to some input length np. This
node must have a child node for all possible advice strings at length np. Each of
these child nodes is responsible for simulating Mi on inputs of length np using
a different advice string. Let nv be a child node of node np that is responsible
for simulating Mi with advice string b. The advice string b can be efficiently
computed from the input length nv – we describe an encoding scheme with this
property in the next section. N ’s advice bit at length nv indicates whether
Mi/b behaves appropriately at length np. If the advice bit is 1, then on inputs

Space Hierarchy Results 39

... ...

np

0

0 1 1

0 1 0 1 0 1

1
n∗

i

p

v nv

0

ℓ nℓ

advice bit indicating whether
Mi/0 behaves appropriately
at length np

0 1

path induced by
advice sequence β

N(0n∗

i
−nℓxℓ,0) = ¬Mi/0(xℓ,0)

N(0n∗

i
−nℓxℓ,1) = ¬Mi/1(xℓ,1)

Figure 4.2: Illustration of N ’s execution for generic semantic models, shown
for the case where Mi receives 1 bit of advice. Solid lines indicate that on the
smaller input, N simulates Mi on padded inputs of the larger length, using the
advice bit specified on the arrow. The dashed line indicates that on padded
inputs of length n∗

i , N complements the behavior of Mi on inputs corresponding
to the leaves of the tree of input lengths.

x of length nv, N simulates Mi(0
np−nvx)/b; otherwise, N abstains and rejects

all inputs of length nv.
Consider an input length nℓ that corresponds to a leaf node ℓ in the tree.

It is the responsibility of the root node of the tree to complement the behavior
of Mi on inputs of length nℓ for all possible advice strings for input length nℓ.
The complementation is realized using inputs xℓ,b of length nℓ for each possible
advice string b at length nℓ. The inputs are chosen in such a way that they
are distinct for all leaf nodes ℓ and advice strings b and such that they remain
distinct when they are padded with zeros to length n∗

i . In particular, we set
xℓ,b = 10nℓ−1−|b|b, and N(0n∗

i −nℓxℓ,b) complements Mi(xℓ,b)/b. Note that n∗
i

must be large enough so that space s(n∗
i) suffices for N to safely complement

the behavior of Mi on all leaf nodes.

Definition 4.2 (safe complementation). Fix a semantic model of computa-
tion and let N and M be two machines in the computable enumeration of the
underlying syntactic model. N on input y safely complements M on input x
if N(y) satisfies the promise (even if M(x) does not), and if M(x) satisfies the
promise then N(y) 6= M(x).

A safe complementation in general incurs a blowup in space, even for models
such as two-sided error machines which are closed under complementation,
because N must avoid breaking the promise when working against a machine Mi

40 Kinne & Van Melkebeek

which does break the promise. One way to achieve this is for N at length n∗
i to

deterministically simulate Mi at the leaf nodes and flip the result. For Arthur-
Merlin games this can be accomplished with a linear-exponential overhead in
space, for unambiguous machines a quadratic overhead is sufficient (Savitch
1970), and for bounded-error randomized machines an overhead with exponent
3/2 is sufficient (Saks & Zhou 1999).

On all input lengths in [ni, n
∗
i] that are not used in the tree of input lengths,

N acts trivially by rejecting all inputs of that length.
We claim that N/α constructed in this way satisfies the promise on all

inputs and differs from Mi/β for all machines Mi and advice sequences β for
which Mi/β behaves appropriately. N/α satisfies the promise on all inputs by
setting the advice bits appropriately on all nodes of the tree. Suppose there
is an advice sequence β causing Mi to compute the same language as N while
satisfying the promise on all inputs and using s(n) space. The construction of
the tree guarantees that there is a chain of inputs present in the tree for this
advice sequence from the root node down to a leaf node. If we assume Mi/β
computes the same language as N on all these inputs, then the complementary
behavior initiated at the root node is copied down all the way to the leaf
node, which is impossible. More precisely, let h be the height of the tree and
n∗

i = ni,h > ni,h−1 > ni,h−2 > . . . > ni,0 = nℓ denote the path from the root of
the tree to the leaf ℓ induced by β. By construction, we have for b = βnℓ

that

¬Mi(xℓ,b)/b = N(0ni,h−nℓxℓ,b)/α = Mi(0
ni,h−nℓxℓ,b)/βni,h

=

N(0ni,h−1−nℓxℓ,b)/α = Mi(0
ni,h−1−nℓxℓ,b)/βni,h−1

= . . . =

N(0ni,1−nℓxℓ,b)/α = Mi(0
ni,1−nℓxℓ,b)/βni,1

= N(xℓ,b)/α = Mi(xℓ,b)/b,

which is a contradiction. We conclude that N/α succeeds in differing from
each machine Mi which satisfies the promise and uses at most s(n) space on
all inputs. It remains to show that N needs space not much more than s(n)
and determine the amount of advice the construction can handle.

4.3. Analysis. In this section, we give remaining details of the construction
of the copying tree, ensuring N/α uses small space and determining the amount
of advice bits that can be given Mi, proving Theorem 1.5, Theorem 1.6, and
Theorem 1.7.

For clarity we focus on the case where s(n) = log n for now; we consider
larger space bounds at the end of this section. Let a(n) denote the amount of
advice we allow Mi, and let σ(n) be the smallest value such that log n space
computations can be complemented within the model using σ(n) space. To

Space Hierarchy Results 41

ensure that N/α requires not much more than log n space, we must balance
two competing requirements – that n∗

i is large enough to be able to efficiently
complement the behavior of the leaf nodes, and that each node in the tree is
close enough to its parent node to be able to simulate it efficiently.

Each node in the tree corresponds to some input length in the interval
[ni, n

∗
i], where n∗

i corresponds to the root of the tree. We separate the tree into
consecutive levels. We call the bottom-most level of leaf nodes “level 0”, its
parent nodes “level 1”, and so on. Let h denote the number of non-leaf levels
in the tree, so the root node at input length n∗

i is at level h.

To ensure the simulations take O(log n) space, we impose the restriction
that a node nv’s parent np can correspond to an input length that is only
polynomially larger: N incurs only a constant factor overhead in simulating
Mi, and if Mi uses space at most log n and np ≤ nc

v for some constant c, then
the simulation requires O(log np) = O(log(nc

v)) = O(lognv) space. We ensure
the input length of a node is separated from its parent’s input length by at most
a polynomial amount as follows. For each j = 0, 1, ..., h− 1, we embed level j
of the tree in the interval [ncj

i , ncj+1

i − 1] for some constant c to be chosen later.
Thus if a node has input length nv, its parent has input length np < (nv)

c2.

Because each internal node must have as many children as possible advice
strings at that length, each internal node in the tree would have a different
degree. We simplify the construction and analysis by rounding up the amount
of advice given to Mi to ensure that all nodes in the same level have the same

degree. That is, all nodes in level j have degree 2a(ncj+1

i).

For completeness, we give the encoding scheme that identifies which input
lengths in the tree correspond to a given node’s children. Consider an input
length n that is an internal node at level j in the tree, so n = ncj

i + ∆ for
some ∆ < ncj+1

i − ncj

i . We must specify which input lengths in level j − 1
correspond to n’s children for each advice string of length a(ncj+1

i). We use the
most obvious encoding scheme, filling in the children for level j nodes from left
to right within level j − 1. That is, n’s child corresponding to advice string b

is at input length ncj−1

i + 2a(ncj+1

i) ·∆ + b. This encoding scheme allows N to
efficiently determine where any given input length falls within the tree, so N
can efficiently determine which padded input and with which advice string it
is to simulate Mi.

The above encoding scheme can only be realized if the interval [ncj

i , ncj+1

i −1]
contains as many input lengths as there are nodes in level j of the tree, for
each j = 0, 1, 2, ..., h− 1. The bottom-most level contains the largest number
of nodes and has the smallest number of input lengths to work with, so the

42 Kinne & Van Melkebeek

tree can be embedded into [ni, n
∗
i] exactly when the bottom-most level fits

within the interval [ni, n
c
i − 1]. Because we have rounded up the degrees of

the nodes, we get a simple expression for the number of leaf nodes in the tree:

2a(nch

i)
∏h

j=2 2a(ncj

i). By taking logarithms, there are enough input lengths in
level 0 for these nodes exactly when

(4.3) a(nch

i) +
h∑

j=2

a(ncj

i) ≤ log(nc
i − ni).

Now consider the space usage of the construction. We have already guaran-
teed the simulations represented by the tree can be performed using O(log n)
space. We must also ensure that the root node operates in O(log n∗

i) space. Be-
cause the root must complement all leaf nodes, the root node runs in O(log n∗

i)
space if

(4.4) log n∗
i = Ω(σ(nc

i)).

If we can simultaneously satisfy both (4.3) and (4.4), we ensure the construction
can be implemented correctly and in space s′(n) for any s′(n) = ω(log n). We
now finish the analysis separately for two cases.

1. For some semantic models, such as Arthur-Merlin games, the most
efficient safe complementation known within the model incurs a
linear-exponential overhead in space. We handle such models using
Theorem 1.5.

2. For some semantic models, such as unambiguous machines and bounded-
error randomized machines, a safe complementation within the model is
known with only a polynomial overhead in space. We handle these models
using Theorem 1.6.

4.3.1. Complementation with Linear-Exponential Overhead
(Theorem 1.5). We first complete the analysis for the more general
setting where there is a safe complementation within the model with a
linear-exponential overhead in space, which is typically achieved by using a
deterministic simulation of the model and flipping the result. We now assume
a semantic model where log n space computations can be complemented within
the model in space O(nd′) for some constant d′. In this case, (4.4) becomes

(4.5) log n∗
i = log nch

i = Ω(ncd′

i).

Space Hierarchy Results 43

In other words, n∗
i = 2Ω(ncd′

i), and we set h = ⌈log(
ncd′

i

log ni
)/ log c⌉ = Ω(log ni)

to ensure (4.5). To fit the leaves of a tree that has depth Ω(log ni) within the
interval [ni, n

c
i −1], the degree at each node can be at most some constant. Let

a(n) = k for some constant k. Then (4.3) becomes

(4.6) k +
h∑

j=2

k = h · k ≤ log(nc
i − ni).

As the right-hand side grows faster with c than the left-hand side, we can pick
c sufficiently large so that both (4.5) and (4.6) are satisfied. The construction
works for any constant k, and we have shown that N/α uses O(log n) space
where the constant only depends on s and the control characteristics of Mi and
k.

We ensure that N/α has enough space to complete the construction by allo-
cating the intervals of input lengths so that for each machine Mi and constant
k, infinitely many of the intervals are allocated to N/α working against Mi with
k bits of advice. We note that given an input x of length n, the computation
of deciding which interval of input lengths [ni, n

∗
i] that n lies within can be

done space-efficiently. With s′(n) = ω(log n) space available, N/α eventually
has enough space to successfully complete the construction against Mi with k
bits of advice. For intervals of input lengths where N/α does not have enough
space to complete the construction, we set the advice bits to 0 over the entire
interval, and N immediately rejects ensuring N/α does not go over its space
quota. We point out that this use of N ’s advice bit obviates the need for s′(n)
to be space-constructible.

We have proved Theorem 1.5 for the case of semantic models such as Arthur-
Merlin games. Section 4.4 contains a precise statement of the properties needed
of a semantic model for our proof of Theorem 1.5 to apply.

4.3.2. Complementation with Polynomial Overhead (Theorem 1.6).
We now complete the analysis for semantic models where there is a safe com-
plementation within the model with only a polynomial overhead in space.
We assume now that Mi’s behavior at length n while using space log n can
be complemented within the model using σ(n) = O(logd n) space. For ex-
ample, d = 2 for unambiguous machines (Savitch 1970) and d = 3/2 for
bounded-error randomized machines (Saks & Zhou 1999). Thus (4.4) becomes

log n∗
i = Ω(logd(nc

i)), or equivalently, n∗
i = 2Ω(logd(nc

i)). Now consider the first
term of (4.3). Plugging in the above equality for n∗

i tells us that we must at

least satisfy a(2γ logd(nc
i)) < log(nc

i) for some constant γ > 0 if we are to satisfy
(4.3). This imposes an upper bound on a(n) of O(log1/d n).

44 Kinne & Van Melkebeek

In fact, we can achieve a(n) = Θ(log1/d n) while still satisfying both (4.3)
and (4.4), as follows. Let a(n) = k log1/d n for some integer k > 0. Substituting
into (4.3) yields

(4.7) k log1/d(nch

i) + k

h∑

j=2

log1/d(ncj

i) ≤ log(nc
i − ni).

For technical reasons, we aim to satisfy (4.4) by ensuring

(4.8) c3 log n∗
i = c3 log(nch

i) ≥ logd(nc
i),

which we satisfy by setting h = ⌈(log(cd−3 logd−1 ni)/ log c⌉.

Using the fact that h ≤ log(cd−3 logd−1(ni))
log c

+ 1, we bound the first term of the

left-hand side of inequality (4.7).

k log1/d(nch

i) = k(ch log ni)
1/d ≤ k(cd−2 logd ni)

1/d = kc(d−2)/d log ni.

Assuming we pick c large enough such that c1/d − 1 ≥ 1, we now bound the
second term.

k
∑h

j=2 log1/d(ncj

i) = k c2/d(c(h−1)/d−1)

c1/d−1
log1/d ni

≤ kc2/d(ch−1)1/d log1/d ni

≤ kc2/d(cd−3 logd−1 ni)
1/d log1/d ni

= kc(d−1)/d log ni.

Adding up these two values satisfies inequality (4.7) for large enough c.
We have shown that the space usage of N/α is O(log n) where the con-

stant only depends on s and the control characteristics of Mi and k. As with
Theorem 1.5, we allocate the intervals of input lengths so that for each machine
Mi and constant k, N/α attempts the construction against Mi with k advice
bits. With s′(n) = ω(log n) space available, N/α eventually has enough space
to complete the construction against Mi with k advice bits, completing the
proof of Theorem 1.6. Among others, Theorem 1.6 applies to semantic mod-
els such as unambiguous machines and bounded-error randomized machines.
Section 4.4 contains a precise statement of the properties required of a model
for our proof of Theorem 1.6 to apply.

4.3.3. Larger Space Bounds (Theorem 1.7). So far we have only con-
sidered the case with s(n) = log n, where we have shown separation results
that are tight with respect to space – that s′(n) space suffices to differ from

Space Hierarchy Results 45

s(n) space machines for any s′(n) = ω(s(n)). Tightness with respect to space
follows from satisfying: (1) each node of the copying tree is close enough to
its parent so the simulations incur only a constant overhead in space, and (2)
nodes are far enough apart so the height of the tree required to allow the root
node to complement leaf nodes does not result in more leaf nodes than input
lengths allocated in the bottom-most level of the copying tree. In the general
setting where safe complementation requires a linear-exponential overhead in
space, these cannot be simultaneously met for super-logarithmic space bounds
– our construction still works but gives a result that is not tight with respect
to space for s(n) = ω(log n).

In the setting where safe complementation incurs only a polynomial over-
head in space, we have more wiggle room and can derive a tight separation for
space bounds up to any polynomial. In fact, an examination of the analysis
for Theorem 1.6 shows the construction remains tight with respect to space for
s(n) any poly-logarithmic function. For larger space bounds the construction
as given is not tight, but we can make some modifications to handle space
bounds up to polynomial. The main idea is to place nodes of the copying tree
closer to their parent nodes to satisfy (1); this can be achieved for space bounds
up to polynomial without breaking (2).

We now prove Theorem 1.7. Fix a semantic model where Mi’s behavior
while it uses s(n) = Ω(log n) space can be safely complemented within the
model using space O(s(n)d). Consider a space bound s(n) = nr for some
constant r > 0. We would like to demonstrate a language computable within
the model using s′(n) space and one bit of advice that is not computable using
s(n) space and O(1) bits of advice, for any s′(n) = ω(s(n)). As alluded to
above, we accomplish this by modifying the generic construction so that each
level of the copying tree is embedded within a smaller interval of input lengths:
we embed level j of the copying tree within input lengths [cjni, c

j+1ni − 1]
where c is a constant we may choose. This ensures that for each nv, np <
c2 · nv and performing the simulation of Mi on inputs of length np uses space
O(nr

p) = O((c2 · nv)
r) = O(c2rnr

v) = O(nr
v) = O(s(nv)). Let h be the height of

the copying tree. To ensure the root node has sufficient space to complement
the leaf nodes, it must be that

(chni)
r = Ω(((c · ni)

r)d),

which we achieve by setting h = ⌈log(nd−1
i)/ log c⌉. If Mi is allowed k advice

bits the total number of leaf nodes is 2h·k = n
k(d−1)/ log c
i , which must be smaller

than c ·ni−ni to ensure the leaf nodes fit within the range of input lengths we

46 Kinne & Van Melkebeek

have allocated for them. We can choose c large enough to ensure this holds. As
with Theorem 1.5 and Theorem 1.6, we allocate the intervals of input lengths
so that for each machine Mi and constant k, N/α attempts the construction
against Mi with k advice bits infinitely many times. With s′(n) = ω(nr)
space available, N/α eventually has enough space to complete the construction
against Mi with k advice bits, ensuring N/α differs from Mi/β if Mi/β satisfies
the promise and uses space at most s(n) = nr on all inputs. We have thus
proved Theorem 1.7.

The main idea of the proof of Theorem 1.7 was to shrink the separation
between each node and its parent until a node can space-efficiently simulate its
parent. This can be achieved for any space bound that is polynomially bounded
and sufficiently smooth (in the sense that it does not have long intervals of slow
growth followed by drastic jumps) by choosing the input lengths for the copying
tree appropriately.

4.4. Generic Semantic Models. Consider the properties of the ma-
chine model used in the above analysis of Theorem 1.5, Theorem 1.6, and
Theorem 1.7. First, N can simulate any other machine Mi with only a constant
factor overhead in space. This is needed to ensure that N needs only slightly
more space than Mi. Second, N can efficiently perform certain deterministic
tasks – e.g., for an input of length n, N performs arithmetic to determine which
interval of inputs [ni, n

∗
i] and which node within the copying tree n corresponds

to. As these requirements are quite modest, any “reasonable” semantic model
satisfies them. Here is a precise statement.

Definition 4.9 (reasonable semantic model). Fix a semantic model of com-
putation with (Mi)i=1,2,3,... the computable enumeration of the underlying syn-
tactic model. The semantic model is called reasonable if it satisfies the following
conditions:

(i) There exists a machine U in the underlying syntactic model such that
for each i ≥ 1, x ∈ {0, 1}∗, and s ≥ sMi

(x), U satisfies the promise on
input (Mi, x, 0s) whenever Mi satisfies the promise on input x, and if so,
U(Mi, x, 0s) = Mi(x). U must run in space O(s + log(|x|+ |Mi|)).

(ii) Let D be a deterministic transducer, i.e., a deterministic machine D
that executes and either outputs an answer a(x) or a query q(x) to some
machine M . For each such D and machine Mi, there must exist a machine
Mi′ such that on each input x: if D(x) outputs an answer a(x), then
Mi′(x) = a(x) and satisfies the promise; and if D(x) outputs a query q(x)

Space Hierarchy Results 47

on which Mi satisfies the promise, then Mi′(x) = Mi(q(x)) and satisfies
the promise. In addition, the space usage of Mi′(x) must be O(sD(x))
when D(x) outputs an answer, and must be O(sD(x) + sMi

(q(x))) when
D(x) outputs a query q(x).

If this holds, we say the model is efficiently closed under deterministic
transducers.

The analysis of Theorem 1.5, Theorem 1.6, and Theorem 1.7 in Section 4.3
was broken up into two cases depending on the efficiency with which safe com-
plementation is possible. We formalize the space overhead of a safe comple-
mentation in the model as follows.

Definition 4.10 (space overhead of safe complementation). Fix a reason-
able semantic model of computation with U the machine given by part (i)
of Definition 4.9. Let σ be a function. We say the model can be safely com-
plemented with space overhead σ if there is a machine S in the underlying
enumeration of machines such that: S satisfies the promise on every input,
S(y) = ¬U(y) for every input y ∈ {0, 1}∗ on which U satisfies the promise, and
S runs within space σ(s + log(|x|+ |Mi|)) on input y = (Mi, x, 0s).

Theorem 1.5 applies to any reasonable semantic models that can be safely
complemented with σ(m) = 2O(s(m)). As mentioned in the introduction, this
includes a wide class of semantic models, and in particular includes models
such as Arthur-Merlin games, for which the simple translation argument of
Karpinski & Verbeek (1987) does not apply.

Theorem 1.6 and Theorem 1.7 apply to any reasonable semantic model that
has a more efficient safe complementation, namely with σ(m) = O(md) for
some constant d. Note that due to the space-bounded derandomization of
Saks & Zhou (1999), randomized two-sided, one-sided, and zero-sided error ma-
chines can be safely complemented with space overhead σ(m) = O(m3/2). Un-
ambiguous machines can be safely complemented with space overhead σ(m) =
O(m2) due to Savitch’s Theorem (Savitch 1970). We point out that it is un-
likely that Arthur-Merlin games can similarly be safely complemented by a
deterministic simulation with space overhead mO(1): a deterministic simulation
of Arthur-Merlin games with polynomial overhead in space would imply that
NC lies in DSPACE(logd n) for some constant d (Fortnow & Lund 1993).

We point out that we have not assumed any efficiency requirements for the
computable enumeration of machines (Mi)i=1,2,3,... in Definition 4.9. Each of the
particular machine models we have discussed has a very efficient enumeration –

48 Kinne & Van Melkebeek

namely all binary strings – because under any encoding of machines into binary
strings we can map unused strings to some default machine. However, being
able to enumerate the machines efficiently is not a requirement of our results;
if the enumeration (Mi)i=1,2,3,... is space inefficient we can modify the locations
of the intervals of inputs [ni, n

∗
i] such that enumerating up to machine i can be

done in log ni space.

5. Promise Problems

For a wide class of semantic models with at least one bit of advice we have
shown that a little bit more space allows them to compute strictly more lan-
guages. Such tight hierarchies remain open if we do not allow any advice at all.
However, we can establish tight hierarchies for generic semantic models with-
out advice if we consider promise (decision) problems (defined in Section 2.4)
instead of languages. In fact, plain delayed diagonalization suffices to do so.
The proofs exploit the freedom which a machine solving a promise problem
has to violate the promise underlying the semantic model on inputs that do
not satisfy the promise underlying the problem. In the previous sections we
introduced advice exactly to prevent the machine that witnesses the hierarchy
from violating the promise underlying the model. This is why the transition
from decision problems to promise problems obviates the need for advice.

For concreteness, consider two-sided error randomized machines. A first
attempt at proving the hierarchy is to use direct diagonalization. Namely,
construct a diagonalizing machine that enumerates all randomized machines
Mi, chooses a certain input xi for machine Mi, and simulates Mi(xi) and does
the opposite. But suppose Mi(xi) does not have two-sided error. Then any
promise problem which Mi computes must have xi /∈ {ΠY ∪ΠN}, and the same
holds for our diagonalizing machine since it simulates and negates Mi(xi). As
xi has the same status with respect to both promise problems, we have not
diagonalized against Mi after all.

Another complication arises when considering promise problems. In the
context of two-sided error for a randomized machine M , the natural promise
problem to associate with M is to set ΠY = {x|Pr[M(x) = 1] ≥ 2/3} and
ΠN = {x|Pr[M(x) = 1] ≤ 1/3}. However, there are many other valid promise
problems that M decides by ignoring certain inputs even though M has two-
sided error on these. The diagonalizing machine N we construct must work
against each Mi in such a way that the promise problem we associate with N
differs from every promise problem which Mi solves. We remedy both this prob-
lem and the above by using delayed diagonalization. We first prove Theorem 1.8

Space Hierarchy Results 49

for the particular case of two-sided error randomized machines.

Let N be the machine we build to diagonalize against promise problems
computable by two-sided error space s(n) machines. For each randomized ma-
chine Mi, we allocate an interval of input lengths [ni, n

∗
i] on which to diagonalize

against Mi. The first part of the construction is a delayed complementation,
which is achieved on input 0n∗

i . Let n∗
i be large enough so that N can determin-

istically the acceptance probability of Mi(0
ni) using space s(n∗

i). N(0n∗
i) should

do the opposite of Mi(0
ni). This is ensured by placing 0n∗

i within the promise
of N and having N(0n∗

i) output 1 with probability 1 if Pr[Mi(0
ni) = 1] < 1

2
,

and output 0 with probability 1 otherwise. Notice that regardless of the status
of Mi(0

ni) in terms of a promise problem (either ni is in ΠY , ΠN , or neither),
N(0n∗

i) does something different.
The second part of the construction copies down the complementary behav-

ior to smaller and smaller padded inputs. On input 0ni+j for 0 ≤ j < n∗
i −ni, N

simulates Mi(0
ni+j+1) while it uses at most s(ni+j+1) space, and we define N ’s

promise to be the natural one on each of these inputs – the input is within the
promise (either ΠY or ΠN) when its probability of acceptance is either at least
2/3 or at most 1/3. On inputs other than those of the form 0ni+j , N rejects
and halts immediately (these inputs are not used in the diagonalization).

Suppose there is a machine Mi using at most s(n) space which computes
the promise problem we associate with N on all inputs in the interval [ni, n

∗
i].

Because 0n∗
i is in the promise of N , this is also true for Mi. N(0n∗

i −1) by
construction simulates Mi(0

n∗
i), and an input has been defined to be in the

promise of N iff N has two-sided error on the input. So 0n∗
i −1 is in the promise

of N , and therefore must also be in the promise of Mi. If we continue this
argument through the entire interval, we conclude that each 0ni+j is contained
within the promise of both N and Mi for j = n∗

i − ni, n
∗
i − ni− 1, ..., 0. By the

assumption that Mi computes the promise problem we associate with N , the
fact that each input is in the promise of Mi and N , and the construction of N
to simulate Mi, we have the following set of equalities:

Mi(0
ni) = N(0ni) = Mi(0

ni+1) = N(0ni+1) = Mi(0
ni+2)

= ... = Mi(0
n∗

i −1) = N(0n∗
i −1) = Mi(0

n∗
i) = N(0n∗

i).

However, we have constructed N(0n∗
i) so that it explicitly differs from Mi(0

ni):
if 0ni is in the promise of Mi, then N flips the output; otherwise 0ni is not in the
promise of Mi even though 0n∗

i is in the promise of N . In either case, N(0n∗
i) 6=

Mi(0
ni) where 6= means the promise problem is different on each. We have

reached a contradiction, so there can be no promise problem defined on Mi that

50 Kinne & Van Melkebeek

corresponds to the natural promise problem of N . Further, standard techniques
guarantee that s′(n) space is sufficient for N to carry out this construction
against all randomized machines Mi for any s′(n) with s′(n) = ω(s(n + 1)).
Namely, equip N with a mechanism to ensure it never uses more than s′(n)
space, and use an enumeration of randomized machines where each machine
appears infinitely often to ensure that for each machine M ′, at least once while
working against M ′ the asymptotic behavior of s′ and s has taken effect so that
N successfully completes the construction against M ′.

The above proof requires only a basic set of properties and holds for any
reasonable semantic model in which safe complementation can be achieved with
a computable overhead in space, i.e., a model that has a safe complementation
with overhead σ for some computable σ in Definition 4.10. The computability
of σ and the fact that s′ is a constructible bound that grows unboundedly
allow us to construct a partition of the input lengths in intervals [ni, n

∗
i] with

the following properties: (1) the partition up to length n can be generated
in space O(log n), and (2) if Mi runs in space s′(ni − 1) at length ni, then
Mi can be safely complemented within space s′(n∗

i) at length ni. Note that
s′(n) = ω(logn), so the partitioning can be computed in space O(s′(n)). These
properties suffice to carry through the above construction of a diagonalizing
machine N that runs in space O(s′(n)), completing the proof of Theorem 1.8.

By clocking the partitioning algorithm to run in time O(n) rather than
space O(log n), the above argument can be modified to yield the following
time-bounded equivalent of Theorem 1.8.

Theorem 5.1 (folklore). Fix any reasonable semantic model of computation
that has a safe complementation with a computable overhead in time. Let t(n)
and t′(n) be time bounds with t(n) = Ω(n) and t′(n) time-constructible. If
t′(n) = ω(t(n + 1) · log t(n + 1)) then there is a promise problem computable
within the model using time t′(n) that is not computable as a promise problem
within the model using time t(n).

Acknowledgements

A preliminary version of this work appeared under the title “Space Hierarchy
Results for Randomized Models” in the 25th annual International Symposium
on Theoretical Aspects of Computer Science, held in Bordeaux, France 2008.

We thank Scott Diehl for many useful discussions, in particular pertaining
to the proof of Theorem 1.3. We also thank the anonymous reviewers of both

Space Hierarchy Results 51

the conference and journal versions of this paper for their time and many useful
suggestions.

Portions of this work were completed while both authors were supported by
NSF awards CCR-0133693 and CCR-0728809 and while the first author was
supported by a Cisco Systems Distinguished Graduate Fellowship.

References

Sanjeev Arora & Boaz Barak (2009). Computational Complexity: A Modern

Approach. Cambridge University Press. To appear, preliminary version available
from http://www.cs.princeton.edu/theory/complexity/.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan & Mario

Szegedy (1998). Proof Verificiation and the Hardness of Approximation Problems.
Journal of the ACM 45(3), 501–555.

Lásló Babai, Lance Fortnow & Carsten Lund (1991). Non-deterministic
exponential time has two-prover interactive protocols. Computational Complexity

1(1), 3–40.

Boaz Barak (2002). A Probabilistic-Time Hierarchy Theorem for Slightly Non-
Uniform Algorithms. In Proceedings of the 6th International Workshop on Random-

ization and Approximation Techniques, José D. P. Rolim & Salil P. Vadhan,
editors, volume 2483 of Lecture Notes in Computer Science. Springer-Verlag.

Manuel Blum & Sampath Kannan (1995). Designing Programs that Check Their
Work. Journal of the ACM 42(1), 269–291.

Gerhard Buntrock, Birgit Jenner, Klaus-Jorn Lange & Peter Ross-

manith (1991). Unambiguity and Fewness for Logarithmic Space. In Proceedings

of the 8th International Conference on Fundamentals of Computation Theory 1991,

Gosen, Germany, Lothar Budach, editor, volume 529 of Lecture Notes in Com-

puter Science, 168–179. Springer-Verlag.

Anne Condon (1993). The complexity of space bounded interactive proof sys-
tems. In Complexity Theory: Current Research, Steven Homer, Uwe Schöning

& Klaus Ambos-Spies, editors, 147–190. Cambridge University Press.

Stephen Cook (1973). A Hierarchy Theorem for Nondeterministic Time Complex-
ity. Journal of Computer and System Sciences 7, 343–353.

Lance Fortnow & Carsten Lund (1993). Interactive proof systems and alter-
nating time-space complexity. Theoretical Computer Science 113(1), 55–73.

52 Kinne & Van Melkebeek

Lance Fortnow & Rahul Santhanam (2004). Hierarchy theorems for proba-
bilistic polynomial time. In Proceedings of the 45nd Annual IEEE Symposium on

Foundations of Computer Science, Rome, Italy, 316–324.

Lance Fortnow, Rahul Santhanam & Luca Trevisan (2005). Hierarchies for
semantic classes. In Proceedings of the Thirty-seventh Annual ACM Symposium on

the Theory of Computing, Baltimore, Maryland, USA, 348–355.

Oded Goldreich (2008). Complexity Theory: A Conceptual Perspective. Cam-
bridge University Press.

Oded Goldreich, Madhu Sudan & Luca Trevisan (2004). From Logarithmic
Advice to Singe-bit Advice. Technical Report TR-04-093, Electronic Colloquium on
Computational Complexity.

Neil Immerman (1988). Nondeterministic Space is Closed Under Complementation.
SIAM Journal on Computing 17(5), 935–938.

Richard Karp & Richard Lipton (1982). Turing machines that take advice.
L’Enseignement Mathématique 28(2), 191–209.

Marek Karpinski & Rutger Verbeek (1987). Randomness, provability, and
the separation of Monte Carlo time and space. In Computation Theory and Logic,
Egon Börger, editor, volume 270 of Lecture Notes in Computer Science, 189–207.
Springer-Verlag.

Dieter van Melkebeek & Konstantin Pervyshev (2007). A Generic Time
Hierarchy for Semantic Models With One Bit of Advice. Computational Complexity

16, 139–179.

Rajeev Motwani & Prabhakar Raghavan (1995). Randomized Algorithms.
Cambridge University Press.

Noam Nisan (1992). RL ⊆ SC. In Proceedings of the Twenty-fourth Annual ACM

Symposium on the Theory of Computing, Victoria, British Columbia, Canada, 619–
623.

Michael Saks (1996). Randomization and Derandomization in Space-Bounded
Computation. In Proceedings of the 11th IEEE Conference on Computational Com-

plexity, Washington DC, 128–149.

Michael Saks & Shiyu Zhou (1999). BPHSPACE(S) ⊆ DSPACE(S3/2). Jour-

nal of Computer and System Sciences 58, 376–403.

Space Hierarchy Results 53

W. Savitch (1970). Relationship between nondeterministic and deterministic tape
classes. Journal of Computer and System Sciences 4, 177–192.

Joel Seiferas, Michael Fischer & Albert Meyer (1978). Separating Nonde-
terministic Time Complexity Classes. Journal of the ACM 25, 146–167.

Adi Shamir (1992). IP = PSPACE. Journal of the ACM 39(4), 869–877.

Róbert Szelepcsényi (1988). The method of forced enumeration for nondeter-
ministic automata. Acta Informatica 26(3), 279–284.

Seinosuke Toda (1991). PP is as hard as the Polynomial-time Hierarchy. SIAM

Journal on Computing 20(5), 865–877.

John Watrous (2003). On the complexity of simulating space-bounded quantum
computations. Computational Complexity 12, 48–84.

Stanislav Žàk (1983). A Turing Machine Time Hierarchy. Theoretical Computer

Science 26, 327–333.

Manuscript received December 12, 2008

Jeff Kinne

Department of Computer Sciences
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706-1685
USA
jkinne@cs.wisc.edu

Dieter van Melkebeek

Department of Computer Sciences
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706-1685
USA
dieter@cs.wisc.edu

	Introduction
	Our Results
	Randomized Models
	Generic Semantic Models
	Promise Problems

	Our Techniques
	Relation to Previous Work

	Organization

	Preliminaries
	Deterministic Turing Machines
	Randomized Turing Machines
	Error Reduction
	Deterministic Simulations

	Semantic Models
	Promise Problems

	Randomized Machines with Bounded Error
	The Need for Advice and Recovery Procedures
	Two-sided Error Recovery Procedure -- Computation Tableau Language
	Zero-sided error Recovery Procedure -- Configuration Reachability
	The Final Construction
	Analysis
	Theorem 1.1 and Theorem 1.3
	Corollary 1.2 and Corollary 1.4
	Additional Remarks

	Separation Results for Generic Semantic Models
	Delayed Diagonalization on Syntactic Models
	Delayed Diagonalization on Semantic Models
	Analysis
	Complementation with Linear-Exponential Overhead (Theorem 1.5)
	Complementation with Polynomial Overhead (Theorem 1.6)
	Larger Space Bounds (Theorem 1.7)

	Generic Semantic Models

	Promise Problems

