
On TC0 Lower Bounds for the Permanent

Jeff Kinne
Indiana State University

jkinne@cs.indstate.edu

September 5, 2012

Abstract

In this paper we consider the problem of proving lower bounds for the permanent. An ongoing
line of research has shown super-polynomial lower bounds for slightly-non-uniform small-depth
threshold and arithmetic circuits [All99, KP09, JS11, JS12]. We prove a new parameterized
lower bound that includes each of the previous results as sub-cases. Our main result implies
that the permanent does not have Boolean threshold circuits of the following kinds.

1. Depth O(1), poly-log(n) bits of non-uniformity, and size s(n) such that for all constants c,
s(c)(n) < 2n. The size s must satisfy another technical condition that is true of functions
normally dealt with (such as compositions of polynomials, logarithms, and exponentials).

2. Depth o(log log n), poly-log(n) bits of non-uniformity, and size nO(1).

3. Depth O(1), no(1) bits of non-uniformity, and size nO(1).

Our proof yields a new “either or” hardness result. One instantiation is that either NP does
not have polynomial-size constant-depth threshold circuits that use no(1) bits of non-uniformity,
or the permanent does not have polynomial-size general circuits.

1 Introduction

The Search for Hard Problems Computational complexity aims to determine the compu-
tational costs of solving important problems, requiring both upper bounds and lower bounds.
Though many types of lower bounds have been difficult to prove, conjectured lower bounds have
become central across complexity theory. As an example, consider the area of derandomization
– the task of converting randomized algorithms into deterministic algorithms with as little loss
in efficiency as possible. Work initiated by Nisan and Wigderson [NW94] gives conditions for de-
randomizing BPP, the set of problems decided by bounded-error randomized polynomial-time
algorithms. If E, deterministic linear-exponential time, contains a problem requiring super-
polynomial circuits then BPP is contained in subexponential time (SUBEXP) [BFNW93]. If
E contains a problem requiring circuits of size 2εn for some positive constant ε then BPP = P
[IW97]. These results are called hardness versus randomness tradeoffs because randomness can
be more efficiently removed by using stronger hardness assumptions.

The lower bound results that have been proved so far have generally been for very high
complexity classes (e.g., exponential-time Merlin-Arthur protocols require super-polynomial size
circuits [BFT98, MVW99]) or for restricted models of computation (e.g., lower bounds for

1

parity on constant-depth circuits [FSS84, Yao85, H̊as87], lower bounds on monotone circuits
[Raz85, Smo87]).

The long-term goal in proving lower bounds for restricted models is to prove lower bounds
for increasingly more general models. The lower bounds for constant-depth circuits could be
improved by allowing more powerful gates than the standard AND, OR, NOT. [Wil11] showed
that non-uniform ACC0 circuits – constant-depth circuits that may include MODm gates for
arbitrary modulus m – of polynomial size cannot compute languages that are complete for
nondeterministic exponential time (NEXP). Because MODm gates can be viewed as specialized
majority gates, the next step in this direction is to prove lower bounds for constant-depth circuits
with majority gates (TC0 circuits).

Uniform TC0 Lower Bounds The discussion above refers to proving lower bounds on non-
uniform circuits – circuit families that consist of a different circuit for each input length n, with
no requirement that the circuits are related to each other in any way. The task of proving super-
polynomial lower bounds for non-uniform TC0 circuits for languages in NEXP remains open.
Progress has been made in proving lower bounds for uniform TC0 circuits – circuit families
where there exists a single Turing machine that can be used to reconstruct the circuit for any
input length. The Turing machine that reconstructs the circuit should at a minimum run in
polynomial time, but because P is believed to be more powerful than uniform TC0 a stronger
notion of uniformity is appropriate. One such strengthening is Dlogtime uniformity. A family of
TC0 circuits is Dlogtime uniform if there exists a Turing machine that correctly answers queries
about connections in the circuits in time that is logarithmic in the size of the circuit. Dlogtime
uniformity is the standard notion of uniformity for low circuit classes such at TC0 (see [BIS90]
for some discussion). We say a TC0 circuit is uniform if it is Dlogtime uniform.

Polynomial-size uniform TC0 circuits can be simulated in logarithmic space, so the space
hierarchy theorem implies that PSPACE-complete languages cannot be computed by uniform
TC0 circuits of subexponential size. [All99] showed that the hard language can be lowered from
PSPACE to the first level of the counting hierarchy at the expense of a slight loss in the size:
languages complete for PP, such as language versions of the permanent, cannot be computed
by uniform TC0 circuits of size s(n) if s is time-constructible and s(c)(n) < 2n for all constants
c, where s(c) denotes s composed with itself c times. [KP09] show a lower bound for threshold
circuits with super-constant depth: languages complete for PP cannot be computed by uniform
threshold circuits of depth o(log log n) and polynomial size.

Non-Uniform TC0 Lower Bounds While there has been progress on proving lower bounds
for uniform TC0 circuits, the ultimate question of proving super-polynomial lower bounds for
non-uniform TC0 circuits remains open. It has been observed that for every constant k > 0
the counting hierarchy contains languages that require general circuits of size nk (see, e.g.,
[All96, KMS12, JS12]), and this applies to TC0 circuits as well. Thus we have two types of lower
bounds for TC0 circuits in the counting hierarchy: fixed-polynomial size and fixed-polynomial
non-uniformity, and large size but uniform. [JS11, JS12] show a lower bound that is intermediate
between these two but for arithmetic circuits rather than Boolean threshold circuits: constant-
depth constant-free arithmetic circuits of polynomial size and no(1)-succinctness cannot compute
the permanent. [JS11] introduces the notion of succinctness as a way to interpolate between
fully uniform and fully non-uniform circuits. A circuit family is a(n)-succinct if questions about
connections in the circuit can be answered by a non-uniform circuit of size a(n). Note that
Dlogtime uniform polynomial-size circuits are necessarily poly-log-succinct, and non-uniform
polynomial-size circuits are poly-succinct.

Many natural questions arise from the lower-bounds results for threshold circuits. Can the
result of [JS12] be proved for Boolean threshold circuits (which are stronger than arithmetic

2

circuits in the sense that threshold circuits can simulate arithmetic circuits)? Can a tradeoff
be proved between the amount of non-uniformity, circuit size, and depth in the lower bounds
for threshold circuits? Our paper answers both questions in the affirmative, as we discuss in
Section 1.1, and gives a unified proof of each of the previous results [All99, KP09, JS12]. The
question which remains open is whether TC0 lower bounds can be extended to simultaneous
super-polynomial non-uniformity and size.

Permanent and Polynomial Identity Testing The line of research on TC0 circuit lower
bounds [All99, KP09, JS11, JS12] has focused on the permanent as the hard language. The
primary property of the permanent that is used is the PP-completeness of the language version
of the permanent. Beyond the fact that the proofs work for the permanent, proving lower bounds
for the permanent is of interest because of connections to derandomization and the polynomial
identity testing problem.

As mentioned already, strong enough lower bounds imply derandomization of BPP, but such
lower bounds have been difficult to prove. To make progress, research has focused on deran-
domizing specific problems. In particular, much work has been done for polynomial identity
testing (PIT) – for which there is a simple and efficient randomized algorithm while the best
deterministic algorithms known require exponential time. Some results have given fast deter-
ministic algorithms for restricted versions of PIT (for example, testing identities encoded by
depth two or three arithmetic circuits), while other results have shown that lower bounds for
restricted types of circuits yield deterministic identity testing procedures for restricted versions
of PIT (see [AS09, SY10] for surveys of this work).

Of particular note to the current discussion is the result that exponential lower bounds for
the permanent on constant-depth arithmetic circuits imply deterministic quasi-polynomial time
algorithms for testing identities on constant-depth circuits that have degree poly-log(n) in each
variable [DSY09]. Thus strong enough TC0 lower bounds for the permanent directly imply
improved PIT algorithms. This provides motivation to continue working towards non-uniform
TC0 lower bounds for the permanent, beyond the fact that TC0 lower bounds are a logical next
step after the ACC0 lower bounds of [Wil11].

1.1 Our Results

Lower Bounds for Permanent Our main result is a new lower bound for small-depth
threshold circuits computing the permanent, Theorem 1. Let L be any PP-hard language
such that any language decidable in PPTIME(t(n)) can be reduced to an instance of L of size
t(n)·poly-log(t(n)) by a quasi-linear size uniform TC0 reduction. By [Zan91], a paddable version
of the 0-1 permanent satisfies this property. Let s′(d) denote a function s′ composed with itself
d times.

Theorem 1. Let s(n), a(n), and d(n) be non-decreasing functions with s(n) time-constructible
and d(n), a(n) ≤ s(n) for all n. Let s′(n) = s(nO(1)), and m = s(2O(n)). If s′(d(m))(n + a(m) +
poly-log(s(m))) < 2n then L does not have depth d(n)−O(1), (a(n)− poly-log(s(n)))-succinct
threshold circuits of size s(n)/ poly-log(s(n)).

Each of the constants in the big-O and polylog terms in Theorem 1 are absolute constants
independent of the functions s, a, and d.

We have the following corollary for the extreme cases of maximizing each of the three param-
eters – size, depth, and amount of non-uniformity – in Theorem 1.

Corollary 1. The permanent does not have threshold circuits of the following kinds.

3

1. Depth O(1), poly-log(s(n))-succinct, and size s(n) such that s(n) is non-decreasing, time-
constructible and for all constants c, s(c)(n) < 2n and log(s(s(2c·n))) = s(O(1))(n).

2. Depth o(log log n), poly-log(n)-succinct, and size nO(1).

3. Depth O(1), no(1)-succinct, and size nO(1).

Corollary 1 captures the main results from the previous works in this area as sub-cases. The
main results of [All99] and [KP09] for the permanent correspond to Items 1 1 and 2 of Corollary
1 but for uniform circuits. The main unconditional lower bounds for the permanent in [JS12]
have the same parameters as Item 3 except they are for constant-depth constant-free arithmetic
circuits rather than Boolean threshold circuits.

Lower Bounds for Permanent or Satisfiability We prove that Theorem 1 can be strength-
ened to imply that either NP is hard for succinct small-depth threshold circuits, or the permanent
is hard for general circuits. In Theorem 2, SAT is the NP-complete language Boolean formula
satisfiability. Any of the standard NP-complete languages could be used instead.

Theorem 2. Let s(n), a(n), and d(n) be non-decreasing functions with s(n) time-constructible
and d(n), a(n) ≤ s(n) for all n. Let s′(n) = s(nO(1)), and m = s(s(2O(n))). If s′(d(m))(n +
a(m) + poly-log(s(m))) < 2n then either

◦ SAT does not have depth d(n) − O(1), (a(n) − poly-log(s(n)))-succinct threshold circuits
of size s(n)/ poly-log(s(n)), or

◦ The permanent does not have non-uniform general circuits of size s(n)/ poly-log(s(n)).

Each item of Corollary 1 can also be stated in a similar way.

More Direct Proof of Known Result Our proof of Theorem 1 uses the fact that the
exponential-time counting hierarchy contains a language that requires circuits of exponential
size. The result has been stated for the setting of the standard counting hierarchy and circuits
of polynomial size in a number of works – including [All96], [KMS12] and [JS12] – where it
is derived by combining Toda’s Theorem [Tod91a] and the fact that the polynomial hierarchy
contains languages that require fixed-polynomial size circuits [Kan82].

We give a more direct proof of the result and state it for a wider range of parameters. The
argument can be used to obtain a language with hardness up to the minimum of 2n − 1 and
the maximal circuit complexity. For our definition of circuit size (string length of the circuit’s
description), the maximal circuit complexity is at least 2n.

Theorem 3. Let h(n) be a time-constructible function such that for all n, n ≤ h(n) < 2n.
There is a language Lhard in DTIMEPP(poly(h(n))) that does not have circuits of size h(n).

Since separations for high resources imply separations for low resources, it will be optimal to
set h(n) as large as possible. We use the following in the proof of Theorem 1.

Corollary 2. There is a language Lhard in DTIMEPP(2O(n)) that does not have circuits of size
2n − 1.

1The last condition on s in Item 1, that log(s(s(2c·n))) = s(O(1))(n), holds for “normal” functions, those composed
of logarithms, exponentials, and polynomials. The corresponding result of [All99] does not require this condition.

4

We point out that our direct proof of Theorem 3 obviates the need to use Toda’s theorem in
a result of [KMS12]. [KMS12] gives an alternate proof of a result of [KI04] that if polynomial
identity testing can be derandomized, then either Boolean circuit lower bounds for NEXP or
arithmetic circuit lower bounds for the permanent must follow. A number of proofs are known
for these types of results [AM11], and the proof of [KMS12] gives the best-known tradeoff
between the parameters. A further benefit of the [KMS12] proof is that it is more direct than
other proofs, and using our proof of Theorem 3 simplifies their proof further.

We also use Theorem 3 to simplify the proof of the result of [Vin05] that for every constant
k > 0 there is a language in PP requiring circuits of size nk.

Remark We learned after publication of our paper that an identical proof of Theorem 3 and
the result of [Vin05] is contained in [Aar06]. [Aar06] extends the results to apply to also quantum
circuits.

1.2 Techniques

To see the structure of the proof of Theorem 1, we first give an outline for proving that constant-
depth uniform threshold circuits of polynomial size cannot compute the permanent. We assume
the permanent has uniform poly-size constant-depth threshold circuits and aim for a contradic-
tion. We achieve the contradiction in two parts.

(i) We use the assumed easiness of the permanent to conclude that a non-uniformly hard
language can be solved by large uniform small-depth threshold circuits. In particular, by
the PP-completeness of the permanent and under the assumed easiness of the permanent,
Lhard of Corollary 2, which is in EPP, has uniform constant-depth threshold circuits of
size 2O(n).

(ii) Let Chard be the circuit for Lhard at input length n from (i). By viewing the threshold
gates within Chard as questions about the permanent, we shrink the circuit as follows. The
first level of threshold gates closest to the inputs in Chard can be viewed as PP questions of
size poly(n); using the assumed easiness of the permanent a circuit C1 of size poly(n) can
be used in place of the threshold gates on the first level. A similar argument shows that
the second level of threshold gates reduce to PP questions of size poly(|C1|), which can be
replaced by a circuit of size poly(poly(|C1|)) using the assumed easiness of the permanent.
This process is repeated for each level of threshold gates in Chard. If Chard has depth d,
we obtain a circuit of size p(d)(n) for some polynomial p after iterating for each level of
threshold gates in Chard.

The conclusion of (ii) is a contradiction – we have constructed a circuit of size poly(n) for
computing Chard although it should require size 2n.

Parameterized Proof Theorem 1 follows the same strategy but with the size, depth, and
succinctness of the assumed circuits for the permanent parameterized as s(n), d(n), and a(n)
respectively. Then the circuit Chard is of size, depth, and succinctness s(m), d(m), and O(a(m)+
poly-log(s(m))), for m = s(2O(n)). The size of Chard is s(s(2O(n))) rather than just s(2O(n))
because the assumed easiness of the permanent is used twice to reduce EPP to a threshold
circuit. The term a(m)+poly-log(s(m)) appears in the inequality of Theorem 1 because the PP
questions in (ii) for the threshold gates must refer to a particular gate in Chard – which requires
the O(a(m)) + poly-log(s(m)) bits of succinctness for constructing Chard. The circuit size s is
composed with itself d(m) times in the inequality because the process is iterated for each level
of threshold gates in Chard.

5

Permanent or NP For Theorem 2, we look more closely at how the easiness of the permanent
is used. In (i) we use the fact that there is a hard language in EPP. For Theorem 2 we instead
use a hard language in EΣ2 , meaning assuming NP is easy is enough to obtain the large threshold
circuit Chard. In (ii) we only use the assumption that the permanent has a small circuit – the
depth and amount of succinctness do not matter. These two observations give Theorem 2.

Hardness of EPP We give an argument for Theorem 3 that is more direct than arguments
that have previously been given, showing that there is a language in DTIMEPP(poly(h(n))) that
does not have circuits of size h(n) for n ≤ h(n) < 2n. Consider input length n. The main idea
is to pick an input, compute the output of all size h(n) circuits on this input, and choose the
output to differ from at least half; then repeat this on a new input, differing from at least half of
the remaining size h(n) circuits; continue for h(n)+1 iterations to differ from all circuits of size
h(n). h(n)+1 iterations are enough because for the definition of circuit size that we use (string
length of the circuit’s description) there are at most 2h(n) circuits of size h(n). The diagonalizing
machine only needs to be able to determine the majority answer of 2h(n) computations. In other
words, the power of counting is needed, so that the appropriate output can be chosen using a
PP oracle.

We point out that this diagonalization strategy has been used before, e.g., in [IKW02] to show
that for every constant k > 0, EXP contains languages that require more than 2nk

time and nk

bits of non-uniform advice.

Comparison with Previous Work Each of the previous works proving super-polynomial
lower bounds for the permanent on small-depth threshold or arithmetic circuits [All99, KP09,
JS12] includes a component similar to step (ii) above – the assumed easiness of the permanent
is used to iteratively shrink a large threshold circuit. [All99] and [JS12] phrase that portion of
their argument as collapsing the counting hierarchy under the assumed easiness of the perma-
nent. This is equivalent to collapsing a large threshold circuit due to the equivalence between
exponential-size uniform constant-depth threshold circuits and the counting hierarchy.

[All99] shows unconditionally that for s satisfying s(O(1)) < 2n the counting hierarchy contains
a language that does not have uniform constant-depth threshold circuits of size s(n). If the
permanent has uniform constant-depth threshold circuits of size s, then the counting hierarchy
collapses (in a way similar to our step (ii)) to size s(O(1))(n) uniform constant-depth threshold
circuits – a contradiction if s(O(1))(n) < 2n.

[JS12] uses the collapse of the counting hierarchy under the assumed easiness of the permanent
within a framework involving hitting sets for polynomials whose coefficients are computed by
constant-depth arithmetic circuits. If the permanent is easy then there is a polynomial that
avoids the hitting set and has coefficients computable in the counting hierarchy. The collapse
of the counting hierarchy under the assumed easiness of the permanent then shows that the
coefficients of the polynomial can be computed more efficiently than should be possible. The
complete proof also uses machinery to translate between arithmetic and threshold circuits.

[KP09] uses an outline that is very similar to ours. If the permanent is easy then E has
small-depth threshold circuits of size 2O(n) and depth o(log n). These threshold circuits are
then collapsed in a way that is similar to our step (ii) above, reaching a contradiction that E
can be computed by subexponential size uniform threshold circuits (and thus in subexponential
time).

Each of the earlier works uses a step similar to our step (ii) to contradict a known separation.
Each work differs in the known separation that is contradicted, and the choice of separation to
base the argument on effects some portions of the argument. The separations used by [All99]
and [KP09] are uniform separations, meaning care must be taken to keep track of the uniformity

6

of the circuit that results from step (ii). By using a non-uniform separation, we do not need to
keep track of the uniformity, resulting in a simpler argument. Using a non-uniform separation
is also required for obtaining hardness against non-uniform circuits.

We have also stated our result as a tradeoff between the different parameters – size, depth,
and non-uniformity – which previous works have not done.

1.3 Alternate Proof of Our Results

After completing our work, we learned that results equivalent to Corollary 1 were obtained inde-
pendently by Chen and Kabanets [CK12]. The main results of [CK12] at first glance look slightly
different than ours because the amount of non-uniformity in their statements is parameterized
as a function of log s(n) rather than in terms of n, but an examination shows that our Theorem
1 implies Theorems 1.1, 1.2, and 1.3 of [CK12]. Not only are our results the same as [CK12], but
the overall proof structure is similar. The main difference is that [CK12] uses Lhard resulting
from the time hierarchy for threshold Turing machines with o(n) bits of advice, whereas we use
a non-uniformly hard language in the exponential time counting hierarchy. Using the different
hard languages results in some differences between the two proofs.

2 Preliminaries

Complexity Classes We assume the reader is familiar with standard complexity classes and
notions such as PP, PPTIME, TC0, AC0, P, EXP, and DTIME. We refer to standard texts such
as [Gol08, AB09] for precise definitions and background.

Circuits In our results and proofs, all circuits are Boolean circuits. A Boolean circuit is a
directed acyclic graph with each internal node labeled as an AND, OR, or NOT gate and with
each root node labeled as either some input bit xi or one of the constants 0 or 1. Without
loss of generality, we assume NOT gates are pushed to the inputs (this can be done by at most
doubling the size of the circuit), so that a circuit consists of only AND and OR gates, taking
x1,¬x1, x2,¬x2, ..., xn,¬xn as input. One of the leaf nodes is labeled as the output of the circuit,
and this output is computed in the natural way. The depth of the circuit is the length of the
longest path from an input to the output.

A threshold circuit may additionally have majority gates of arbitrary fan-in. As majority gates
can be used in place of AND and OR gates, without loss of generality all gates in a threshold
circuit are majority gates.

We use the convention that the size of a circuit is the string length of its description. Thus
the number of circuits of size n is at most 2n. This makes the analysis cleaner than using the
number of gates or wires and only effects results by polylogarithmic factors. Because there
are exactly 22n

Boolean functions on n bits, it is immediate that there exists a language that
requires circuits of size at least 2n.

Succinct Circuits Our results concern a notion of non-uniformity termed succinctness that
was introduced in [JS11]. Succinctness is a natural notion of non-uniformity for circuit classes
that are only slightly non-uniform. A circuit family {Ci}i∈N is a(n)-succinct if for each n,
there is a circuit Qn that is of size a(n) and correctly answers queries about the connections in
Cn. The standard notion of uniform constant-depth circuits is Dlogtime uniformity; a circuit
family is Dlogtime uniform if there is a Turing machine that correctly answers queries about
the connections in Cn and runs in time linear in its input length (and thus logarithmic in the
size of the circuit). Note that Dlogtime uniform circuits are necessarily poly-log-succinct. It is

7

for this reason that poly-log terms appear frequently in our analysis – poly-log succinctness is
the minimum needed to perform operations that Dlogtime-uniform circuits can perform.

Permanent and PP The only property of the permanent needed for our results is PP-
hardness. [Zan91], building on [Val79], implies that any language in PPTIME(n) reduces to
the 0-1 permanent with a quasi-linear size uniform AC0 reduction, where quasi-linear means
n · poly-log(n).

For the main part of the proof of Theorem 1, we use a different PP-complete language,
LPP = {x,M, 1t| the probabilistic machine M runs in time at most t on input x and the
majority of computation paths are accepting}. The advantage of this language is that any
PPTIME(n) language reduces to LPP in linear time, so we can avoid polylog factors in the
analysis by only reducing to the permanent at the very end of our proof. LPP is contained in
quasi-linear time PP, and by the result mentioned above reduces to instances of the permanent
of quasi-linear size.

3 A Known Circuit Lower Bound

In this section we give an argument for Theorem 3 that is more direct than arguments that have
previously been given. We refer to Sections 1.1 and 1.2 for discussion of previous proofs of this
result.

Theorem 3 (restated). Let h(n) be a time-constructible function such that for all n, n ≤
h(n) < 2n. There is a language Lhard in DTIMEPP(poly(h(n))) that does not have circuits of
size h(n).

Proof. Let x1, ..., xh(n)+1 be the h(n) + 1 lexicographically smallest inputs of length n. The PP
language we use as oracle is

O = {(1n, j, b1, ..., bh(n)+1)| C(xj) = bj for at most 1/2

of the circuits C of size h(n) with C(xi) = bi for all 1 ≤ i < j.}

O can be decided in PP by a machine as follows. The machine guesses a circuit of size h(n); if
the circuit does not agree with one of the bi between 1 and j − 1 then the PP machine splits
into two nondeterministic paths with one accepting and one rejecting; otherwise the PP machine
accepts iff C(xj) 6= bj . Then there are at least half accepting paths iff at least half of the circuits
in question disagree with bj on xj . As we can evaluate a circuit of size h(n) in poly(h(n)) time,
the running time for O is poly(h(n)), which is polynomial in the input length, so O ∈ PP.

Lhard is defined as follows. Lhard(x1) = O(1n, 1, 0, 0, ..., 0), and already Lhard differs from
at least half of the circuits of size h(n). Lhard(x2) = O(1n, Lhard(x1), 1, 0, ..., 0). So now Lhard

differs from at least 3/4 of the circuits of size h(n). And so on. As there are at most 2h(n)

circuits of size h(n), we will have differed from all in at most h(n) + 1 steps. For inputs not in
the set {x1, ..., xh(n)+1} we can define Lhard arbitrarily (e.g., set it to 0). Notice that Lhard can
be decided in O((h(n))2) time with access to the PP oracle O.

3.1 Lower Bound for PP

Theorem 3 can be used to simplify the proof of the result that for any constant k > 0, PP does
not have circuits of size nk [Vin05]. Suppose PP has polynomial size circuits (otherwise we have
nothing to prove). By [LFKN92], PP ⊆ MA, and also PPP ⊆ MA. It is known that MA ⊆ PP,
so PPP = MA = PP. By Theorem 3, for any k > 0 there is a language in PPP that does not

8

have circuits of size nk, and since PPP = PP this language is in PP as well. We have that either
PP does not have polynomial size circuits, or PP does not have circuits of size nk.

The original proof of [Vin05] is similar to this proof. The main difference is that the ear-
lier proof uses Toda’s theorem [Tod91b] and circuit lower bounds in the polynomial hierarchy
[Kan82] in place of Theorem 3.

4 Lower Bounds for Permanent

In this section we prove our main results, Theorem 1, Corollary 1, and Theorem 2. Theorem 1 is
proved in Section 4.1 subject to two claims, which are proved in Sections 4.2 and 4.3. Theorem
2 is proved in Section 4.4

4.1 Proof of Theorem 1

Theorem 1 (restated). Let s(n), a(n), and d(n) be non-decreasing functions with s(n) time-
constructible and d(n), a(n) ≤ s(n) for all n. Let s′(n) = s(nO(1)), and m = s(2O(n)). If
s′(d(m))(n + a(m) + poly-log(s(m))) < 2n then L does not have depth d(n) − O(1), (a(n) −
poly-log(s(n)))-succinct threshold circuits of size s(n)/ poly-log(s(n)).

To prove Theorem 1, we combine the hard language Lhard resulting from Corollary 2 with
the following two claims. Let LPP be the PP-complete language defined in Section 2

Claim 1. Let s(n), a(n), and d(n) be non-decreasing functions with s(n) time-constructible and
d(n), a(n) ≤ s(n) for all n. If LPP has a(n)-succinct threshold circuits of depth d(n) and size s(n)
then Lhard has threshold circuits of size s(m), depth d(m), and is O(a(m)) + poly-log(s(m)))-
succinct, for m = s(2O(n)).

Proving Claim 1 amounts to plugging in the assumed circuit for LPP into the EPP computation
of Lhard.

Claim 2. Let s(n), a(n), and d(n) be non-decreasing functions with s(n) time-constructible and
d(n), a(n) ≤ s(n) for all n. If LPP has a(n)-succinct threshold circuits of depth d(n) and size
s(n) then Lhard has size s′(d(m))(n + a(m) + poly-log(s(m))) circuits for s′(n) = s(nO(1)) and
m = s(2O(n)).

To prove Claim 2, we use the threshold circuit from Claim 1 and shrink it by using the
easiness of LPP to collapse the threshold gates iteratively. This is the step that is at the heart
of all previous papers [All99, KP09, JS11, JS12] proving lower bounds for the permanent on
small-depth threshold or arithmetic circuits.

If the size of the circuit for Lhard in Claim 2 is less than 2n, we conclude that LPP cannot have
a(n)-succinct threshold circuits of depth d(n) and size s(n). The statement of Theorem 1 follows
by the quasi-linear size uniform AC0 reduction from LPP to the permanent: if the permanent has
depth d(n) threshold circuits of size s(n) and succinctness a(n), then LPP has depth d(n)+O(1)
threshold circuits of size s(n) poly-log(s(n)) and succinctness a(n) + poly-log(s(n)).

All that remains is to prove the claims.

4.2 Proof of Claim 1

We take the EPP computation of Lhard of Corollary 2. First consider the PP oracle from
the definition of Lhard. The oracle O in the proof of Theorem 3 is computable in polynomial

9

PPTIME, and the instances we need are of size O(2n). The oracle queries can thus be translated
to queries to LPP of size N = 2O(n) 2. Given the assumed threshold circuits for LPP, the oracle
queries can be decided by a depth d(N) threshold circuit CPP of size s(N) and succinctness
a(N) + poly-log(s(N)).

Deciding membership in Lhard amounts to querrying the oracle O on at most 2n inputs. This
gives an oracle circuit that makes exponentially many adaptive queries to O. In this circuit
we replace each oracle gate with the circuit CPP, obtaining a single circuit deciding Lhard

that is of size poly(2n · s(N)) that requires a(N) + poly-log(s(N)) bits of succinctness. This
circuit can be viewed as a circuit value problem of size m′ = poly(2n · s(N)). Because P ⊆
PP and LPP is complete for PP, this circuit value problem reduces to an instance of LPP of
size m = O(m′). Using the assumed easiness of LPP, such instances can be solved by threshold
circuits of depth d(m) and size s(m). The amount of succinctness needed throughout the
reductions is a(N)+poly-log(s(N))+a(m)+poly-log(s(m)), which is O(a(m)+poly-log(s(m))).
The statement of Claim 1 results from simplifying the expression for m to s(2O(n)) using the
fact that s(n) ≥ n and both s and a are non-decreasing.

4.3 Proof of Claim 2

Main Idea For each input length n, we aim to build a circuit for Lhard at input length n.
With the assumed easiness of LPP and using Claim 1, we have a threshold circuit Chard for Lhard

with size s(m), depth d(m), and succinctness O(a(m) + poly-log(s(m))), for m = s(2O(n)). The
plan is to shrink Chard by viewing the threshold gates as small PP questions and using the
assumed easiness of LPP to collapse the gates. We do this iteratively level by level in the circuit.
The proof consists mostly of keeping track of the size of the circuit produced as a result of this
process.

Iterative Shrinking of Chard For each i, we define the following language.

Li = {(x, j)| on input x of length n, gate j in Chard is at depth i and outputs 1}

The value j is padded to n bits to ensure that each input length of Li regards a single value of
n. We iteratively construct circuits for input length 2n = |(x, y)| for L1, L2, ..., Ld(m). For each
i, we use the circuit constructed for Li to build the circuit for Li+1. The final circuit for Ld(m)

at length 2n corresponds to the output gate of Chard for inputs x of length n.

First level of Threshold Gates First consider L1, corresponding to the first level of threshold
gates in Chard. Given input (x, j) with x of length n, a PP machine determines the output of
gate j as follows.

1. Use O(a(m) + poly-log(s(m))) bits of advice as the succinctness for Chard to verify that j
is a gate at depth 1, and if not split into a rejecting and an accepting state.

2. Nondeterministically guess an input label k and use the advice from 1. as the succinctness
for Chard to verify k is an input to gate j; if not split into a rejecting and an accepting
state.

3. Accept iff the input bit labeled by k is 1.

This PP computation has a majority of accepting computation paths iff j is a gate at depth
1 and the majority of the inputs to gate j are 1. The amount of time for the computation

2We can assume all queries are the same size because LPP is paddable – queries of smaller length can be made
longer to match the longest query.

10

is poly(n + a(m) + poly-log(s(m))), and we have used O(a(m) + poly-log(s(m))) bits of non-
uniformity. This PP computation can be reduced to an instance of LPP of size poly(n+ a(m)+
poly-log(s(m))). By the assumed easiness of LPP, and including the O(a(m) + poly-log(s(m)))
bits of non-uniformity, these instances are solved by a threshold circuit C1 of size

S1 = s(poly(n + a(m) + poly-log(s(m)))) + O(a(m) + poly-log(s(m))).

Because our ultimate goal is a non-uniform, arbitrary-depth circuit for Lhard we do not need to
keep track of the depth and amount of succinctness in this circuit.

Level i + 1 of Threshold Gates Now consider Li+1 assuming we have a circuit Ci for Li.
Given an input (x, j), a PP machine can determine the correct output of gate j as follows.

1. Use O(a(m) + poly-log(s(m))) bits of advice as the succinctness for Chard to verify that j
is a gate at depth i + 1, and if not split into a rejecting and an accepting state.

2. Nondeterministically guess a gate label k and use the advice from 1. as the succinctness
for Chard to verify k is an input to gate j; if not split into a rejecting and an accepting
state.

3. Accept iff Ci indicates that k outputs 1, namely if Ci(x, k) = 1.

This PP computation computes Li+1 just as in the case for L1 above. The amount of time
for the computation is poly(n + a(m) + poly-log(s(m)) + |Ci|), and we have used O(a(m) +
poly-log(s(m))) + |Ci| bits of non-uniformity. This PP computation can be reduced to an
instance of LPP of size poly(n+a(m)+poly-log(s(m))+ |Ci|). By the assumed easiness of LPP,
letting Si = |Ci|, and including the O(a(m) + poly-log(s(m))) + |Ci| bits of non-uniformity, we
have a circuit Ci+1 for Li+1 that is of size

Si+1 = s(poly(n + a(m) + poly-log(s(m)) + Si)) + O(a(m) + poly-log(s(m))) + Si.

Simplifying the Expression for the Circuit Size Let us simplify the formula for Si. First,
S1 can be simplified as S1 = s(poly(n + a(m) + poly-log(s(m)))) using the fact that s and a are
non-decreasing and s(M) ≥ a(M). For similar reasons, Si+1 can be written as s(poly(n+a(m)+
poly-log(s(m) +Si))). Since s and a are non-decreasing, S1, S2, ..., Si is non-decreasing so that
n + a(m) + poly-log(s(m)) ≤ Si for each i. We can thus rewrite Si+1 as s(poly(Si)). Letting
s′(M) = s(M c) for large enough constant c, we have that Si+1 = s′(i)(n+a(m)+poly-log(s(m))).
Chard is computed at level d(m), so by a circuit of size s′(d(m))(n + a(m) + poly-log(s(m))).

4.4 Proof of Theorem 2

In this section we observe that Theorem 1 can be strengthened by examining the proof more
carefully, proving Theorem 2.

Theorem 2 (restated). Let s(n), a(n), and d(n) be non-decreasing functions with s(n) time-
constructible and d(n), a(n) ≤ s(n) for all n. Let s′(n) = s(nO(1)), and m = s(s(2O(n))). If
s′(d(m))(n + a(m) + poly-log(s(m))) < 2n then either

◦ SAT does not have depth d(n) − O(1), (a(n) − poly-log(s(n)))-succinct threshold circuits
of size s(n)/ poly-log(s(n)), or

◦ The permanent does not have non-uniform general circuits of size s(n)/ poly-log(s(n)).

The easiness of the PP-hard language LPP is used in the proof of Theorem 1 for two key
purposes.

11

(i) Corollary 2 and Claim 1 show that if LPP has small-depth threshold circuits, there is a
hard language Lhard with large small-depth threshold circuits.

(ii) Claim 2 shows that if LPP has small circuits, the circuit from (i) can be iteratively made
smaller.

For step (i), we can replace LPP by any language that, if assumed to have small-depth thresh-
old circuits, implies a small-depth threshold circuit for a language with high circuit complexity.
For example, we can use an NP-complete language and the following fact.

Theorem 4 ([Kan82, MVW99]). There is a language Lhard in DTIMEΣp
2 (2O(n)) that does

not have circuits of size 2n − 1.

Using the NP-complete language LNP = {(x,M, 1t)| the nondeterministic machine M runs in
time at most t on input x with an accepting path}, Claim 1 becomes instead the following.

Claim 3. Let s(n), a(n), and d(n) be non-decreasing functions with s(n) time-constructible and
d(n), a(n) ≤ s(n) for all n. If LNP has a(n)-succinct threshold circuits of depth d(n) and size
s(n) then Lhard has threshold circuits of size s(m), depth d(m), and is O(a(m)+poly-log(s(m)))-
succinct, for m = s(s(2O(n))).

The change in the value of m is due to working in the third level of the exponential alternating
hierarchy, whereas in Claim 1 the hard language was in the second level of the exponential
counting hierarchy.

For step (ii), the proof only requires that the PP-hard language LPP has small general circuits
– the small-depth and succinctness restrictions are not used in the argument.

Combining these two observations, we have a result stating that if both (1) an NP-hard
language has small succinct small-depth threshold circuits, and (2) a PP-hard language has
small general circuits, then Lhard has small circuits. Specifically, we have the following claim in
place of Claim 2. For conciseness we have assumed the same size for both LNP and LPP; a more
general statement could be made that implies a tradeoff between the assumed circuit sizes for
the two different languages.

Claim 4. Let s(n), a(n), and d(n) be non-decreasing functions with s(n) time-constructible and
d(n), a(n) ≤ s(n) for all n. If LNP has a(n)-succinct threshold circuits of depth d(n) and size
s(n) and LPP has circuits of size s(n) then Lhard has size s′(d(m))(n + a(m) + poly-log(s(m)))
circuits for s′(n) = s(nO(1)) and m = s(s(2O(n))).

If the resulting circuit is of size less than 2n, then the assumed circuits for either LNP or LPP

must not exist. Including reductions from LNP to SAT and from LPP to the permanent results
in the parameters of Theorem 2.

5 Discussion

In this section we discuss some possible extensions of the lower bounds for the permanent on
small-depth threshold circuits.

Non-Uniformity A natural question is if our techniques allow the no(1) amount of non-
uniformity in Corollary 1 to be pushed any higher. It seems progress in this direction will
need new ideas and/or a new framework. The framework used in this and previous papers all
encounter a roughly inverse relationship between the size of circuits in the lower bound and the
amount of non-uniformity that can be handled. In Theorem 1 hardness holds if the inequality

12

stated in the theorem holds. The inequality requires that s(a(2n)) < 2n and more generally
requires a(m) to be an inverse of s(d(m)). This arises in the proof due to the nature in which
the assumed easiness of the permanent is used repeatedly in Claim 2, and a similar issue arises
in earlier work in this area [All99, KP09, JS12].

Furthermore, the proofs of our main results relativize, but it is known that proving results
with larger non-uniformity, say ≥ n bits, requires non-relativizing techniques. Thus to make
progress we ought to look at utilizing techniques such as the interactive proofs for the permanent,
random self-reducibility, and combinatorial properties of threshold circuits.

Average-Case Hardness Another direction that is natural to consider is whether an average-
case hardness result can be proved for the permanent on constant-depth threshold circuits. This
is an intriguing question because of the worst-case to average-case reductions known for the per-
manent. The standard random self-reduction views the permanent as a low-degree polynomial
and uses polynomial interpolation, which can be done by uniform TC0 circuits [HAB02]. But
the reduction is randomized and in particular uses at least a linear amount of randomness. This
could be translated into a linear amount of advice, but we have just seen our proof cannot
handle this much advice.

Almost Everywhere Hardness Can it be shown that threshold circuits must fail to compute
permanent and other PP-hard languages on almost every input length? Consider the argument
given in Section 4 if the PP-hard language LPP is assumed to be easy only on infinitely many
input lengths. Theorem 3 and Corollary 2 go through with no problem, giving that Lhard is
hard on infinitely many input lengths. But Claims 1 and 2 encounter difficulties because the
argument uses the easiness of permanent on multiple different input lengths (lengths N and m
from Claim 1 to obtain a large threshold circuit for Lhard, and roughly d(m) input lengths in
Claim 2 to shrink that circuit by looking at the threshold gates in the circuit). If the permanent
is not easy on all these input lengths, the argument fails.

This situation is common to many other lower bounds that use indirect or multi-step argu-
ments and has been discussed in [FS11].

Acknowledgments

This research was partially supported by Indiana State University, University Research Council
grants #11-07 and #12-18. We thank Matt Anderson, Dieter van Melkebeek, and Dalibor
Zelený for discussions that began this project, continued discussions since, and comments on
early drafts of this work. We thank Matt in particular for observations that refined the statement
of Theorem 2. We also thank the reviewers for comments and suggestions that improved the
exposition of the paper.

References

[Aar06] Scott Aaronson. Oracles are subtle but not malicious. In Proceedings of the IEEE
Conference on Computational Complexity (CCC), pages 340–354, 2006.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[All96] Eric Allender. Circuit complexity before the dawn of the new millennium. In Pro-
ceedings of the Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 1–18, 1996.

13

[All99] Eric Allender. The permanent requires large uniform threshold circuits. Chicago
Journal of Theoretical Computer Science, 1999.

[AM11] Scott Aaronson and Dieter van Melkebeek. On circuit lower bounds from deran-
domization. Theory of Computing, 7(1):177–184, 2011.

[AS09] Manindra Agrawal and Ramprasad Saptharishi. Classifying polynomials and iden-
tity testing. Current Trends in Science, Platinum Jubilee Special, pages 149–162,
2009.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexpo-
nential time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3(4):307–318, 1993.

[BFT98] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Pro-
ceedings of the IEEE Conference on Computational Complexity (CCC), pages 8–12,
1998.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity
within NC1. Journal of Computer and System Sciences, 41(3):274–306, 1990.

[CK12] Ruiwen Chen and Valentine Kabanets. Lower bounds against weakly uniform cir-
cuits. In Proceedings of the Annual International Computing and Combinatorics
Conference (COCOON), pages 408–419, 2012.

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for
bounded depth arithmetic circuits. SIAM Journal on Computing, 39(4):1279–1293,
2009.

[FS11] Lance Fortnow and Rahul Santhanam. Robust simulations and significant separa-
tions. In Proceedings of the International Colloquium on Automata, Languages and
Programming (ICALP), pages 569–580, Berlin, Heidelberg, 2011. Springer-Verlag.

[FSS84] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Theory of Computing Systems, 17:13–27, 1984.

[Gol08] Oded Goldreich. Complexity Theory: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008.

[HAB02] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication. Journal of Com-
puter and System Sciences, 65(4):695–716, 2002.

[H̊as87] Johan H̊astad. Computational Limitations of Small-Depth Circuits. MIT Press,
Cambridge, MA, USA, 1987.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: exponential time vs. probabilistic polynomial time. Journal of Computer
and System Sciences, 65(4):672–694, 2002.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the ACM Symposium on Theory
of Computing (STOC), pages 220–229, 1997.

[JS11] Maurice Jansen and Rahul Santhanam. Permanent does not have succinct polyno-
mial size arithmetic circuits of constant depth. In Proceedings of the International
Colloquium on Automata, Languages and Programming (ICALP), volume 6755 of
Lecture Notes in Computer Science, pages 724–735. Springer, 2011.

[JS12] Maurice Jansen and Rahul Santhanam. Marginal hitting sets imply super-
polynomial lower bounds for permanent. In Innovations in Theoretical Computer
Science, 2012.

14

[Kan82] Ravi Kannan. Circuit-size lower bounds and nonreducibility to sparse sets. Infor-
mation and Control, 55(1):40–56, 1982.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. Computational Complexity, 13(1/2):1–46,
2004.

[KMS12] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom generators,
typically-correct derandomization and circuit lower bounds. In Computational Com-
plexity, volume 21, pages 3–61, 2012.

[KP09] Pascal Koiran and Sylvain Perifel. A superpolynomial lower bound on the size of
uniform non-constant-depth threshold circuits for the permanent. In Proceedings of
the IEEE Conference on Computational Complexity (CCC), pages 35–40, 2009.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. Journal of the ACM, 39(4):859–868, 1992.

[MVW99] Peter Bro Miltersen, N. Variyam Vinodchandran, and Osamu Watanabe. Super-
polynomial versus half-exponential circuit size in the exponential hierarchy. In
Proceedings of the Annual International Computing and Combinatorics Conference
(COCOON), pages 210–220, 1999.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer
and System Sciences, 49(2):149–167, 1994.

[Raz85] Alexander Razborov. Lower bounds on the monotone complexity of some Boolean
function. Dolk. Akad. SSSR, 281(4):598–607 (in Russian), 1985. English translation
in Soviet Math. Dokl. 31 (1985), 354–357.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean cir-
cuit complexity. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 77–82, 1987.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science, 5(3–
4):207–388, 2010.

[Tod91a] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20(5):865–877, 1991.

[Tod91b] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20(5):865–877, 1991.

[Val79] Leslie G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8:189–201, 1979.

[Vin05] N. V. Vinodchandran. A note on the circuit complexity of PP. Theoretical Computer
Science, 347(1-2):415–418, 2005.

[Wil11] Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the IEEE
Conference on Computational Complexity (CCC), pages 115–125, 2011.

[Yao85] Andrew C-C. Yao. Separating the polynomial-time hierarchy by oracles. In Proceed-
ings of the IEEE Symposium on Foundations of Computer Science (FOCS), pages
1–10, 1985.

[Zan91] Viktoria Zanko. #P-completeness via many-one reductions. International Journal
of Foundations of Computer Science, 2(1):77–82, 1991.

15

	Introduction
	Our Results
	Techniques
	Alternate Proof of Our Results

	Preliminaries
	A Known Circuit Lower Bound
	Lower Bound for PP

	Lower Bounds for Permanent
	Proof of Theorem 1
	Proof of Claim 1
	Proof of Claim 2
	Proof of Theorem 2

	Discussion

