・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

On TC⁰ Lower Bounds for the Permanent

Jeff Kinne

Indiana State University, USA

COCOON, August 22, 2012 Note: slides online at kinnejeff.com

◆□> ◆□> ◆臣> ◆臣> ─ 臣

Main Result, Definitions and Context

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lower bound for Perm on threshold circuits with depth d, advice a, size s, s.t.

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n$

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)}$

•
$$d = O(1)$$
, $a = n^{o(1)}$, $s = n^{O(1)}$

Lower bound for Perm on threshold circuits with depth d, advice a, size s, s.t.

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n$

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)}$

•
$$d = O(1)$$
, $a = n^{o(1)}$, $s = n^{O(1)}$

Lower bound for Perm on threshold circuits with depth d, advice a, size s, s.t.

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n$

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)}$

•
$$d = O(1)$$
, $a = n^{o(1)}$, $s = n^{O(1)}$

Basic info: Complexity Zoo

イロト 不同下 イヨト イヨト

3

3/22

Theorem (Main Result)

Lower bound for Perm on threshold circuits with depth d, advice a, size s, s.t.

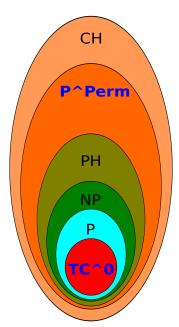
•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n$

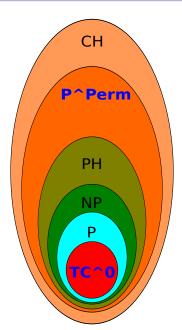
•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)}$

•
$$d = O(1)$$
, $a = n^{o(1)}$, $s = n^{O(1)}$

Basic info: Complexity Zoo Main result also discovered by [CK12]

 ・< 部・< き・< き・ き・ やへで 4/22

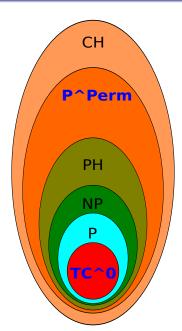




Permanent

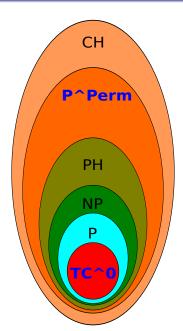
• Determinant without minus signs

• #P, PP, VNP-complete

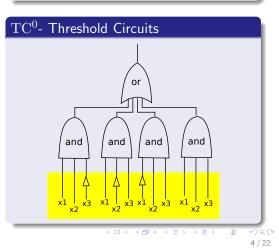


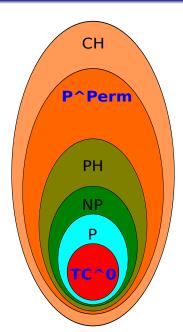
- Determinant without minus signs
- #P, PP, VNP-complete

TC^{0} - Threshold Circuits



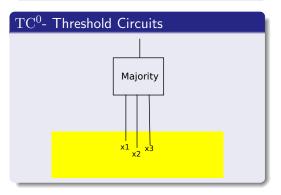
- Determinant without minus signs
- #P, PP, VNP-complete



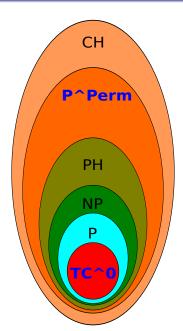


Permanent

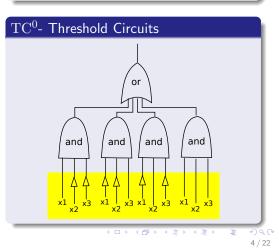
- Determinant without minus signs
- #P, PP, VNP-complete

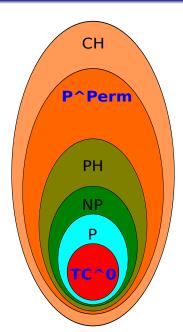


(ロ) (四) (E) (E) (E)



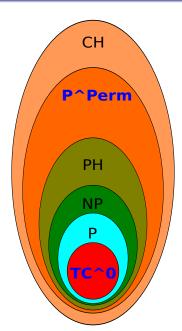
- Determinant without minus signs
- #P, PP, VNP-complete





- Determinant without minus signs
- #P, PP, VNP-complete

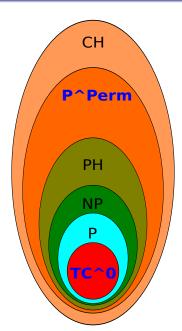




- Determinant without minus signs
- #P, PP, VNP-complete

$\mathrm{TC}^{0}\text{-}$ Threshold Circuits

• constant depth, \approx const parallel time



Permanent

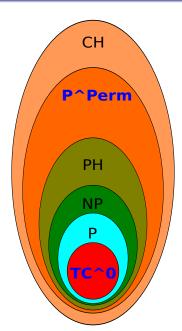
- Determinant without minus signs
- #P, PP, VNP-complete

$\mathrm{TC}^{0}\text{-}$ Threshold Circuits

• constant depth, \approx const parallel time

イロン イロン イヨン イヨン 三日

• integer arithmetic: + - * /



- Determinant without minus signs
- #P, PP, VNP-complete

$\mathrm{TC}^{0}\text{-}$ Threshold Circuits

- constant depth, \approx const parallel time
- integer arithmetic: + * /
- PRGs, crypto?

[NRR02]

TC^0 Lower Bounds

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (~ 5/22

TC^0 Lower Bounds

• DTIME(super-poly) $\neq \mathrm{TC}^0$

(time hierarchy)

<ロ > < 部 > < 注 > < 注 > 注 の < C 5/22

TC^0 Lower Bounds

- DTIME(super-poly) $\neq TC^0$
- SPACE(super-log) $\neq TC^0$

(time hierarchy) (space hierarchy)

イロン イヨン イヨン イヨン 三日

TC^0 Lower Bounds

- DTIME(super-poly) $\neq TC^0$
- SPACE(super-log) $\neq TC^0$

(time hierarchy) (space hierarchy)

Threshold Circuit Lower Bounds

$\mathrm{T}\mathrm{C}^0$ Lower Bounds

- DTIME(super-poly) $\neq TC^0$
- SPACE(super-log) $\neq TC^0$

(time hierarchy) (space hierarchy)

Threshold Circuit Lower Bounds

• Perm $\not\subseteq$ TC size *s*, $s^{(O(1))} < 2^n$

$\mathrm{T}\mathrm{C}^0$ Lower Bounds

- DTIME(super-poly) $\neq TC^0$
- SPACE(super-log) $\neq TC^0$

(time hierarchy) (space hierarchy)

[All99]

[KP09]

Threshold Circuit Lower Bounds

- Perm $\not\subseteq$ TC size *s*, $s^{(O(1))} < 2^n$
- Perm $\not\subseteq$ TC depth $o(\log \log n)$, poly size

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

TC^0 Lower Bounds

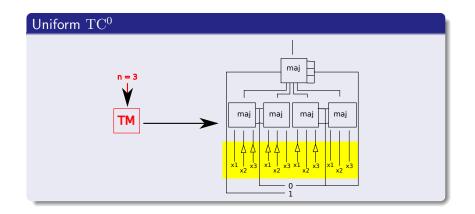
- DTIME(super-poly) $\neq TC^0$
- SPACE(super-log) $\neq TC^0$

(time hierarchy) (space hierarchy)

Threshold Circuit Lower Bounds• Perm \nsubseteq TC size s, $s^{(O(1))} < 2^n$ [All99]• Perm \nsubseteq TC depth $o(\log \log n)$, poly size[KP09]• Perm \nsubseteq arithmetic circuits with $n^{o(1)}$ advice[JS12]

Uniform TC⁰

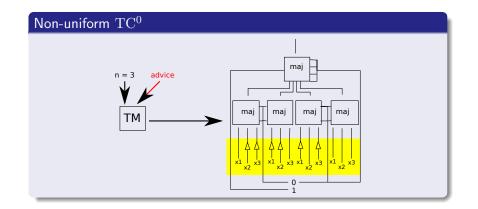
◆□ → < 畳 → < Ξ → < Ξ → Ξ → < ○ < ○ 6/22

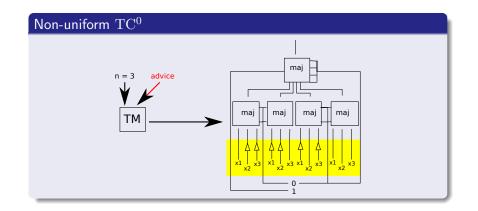


<ロ> (四) (四) (注) (三) (三)

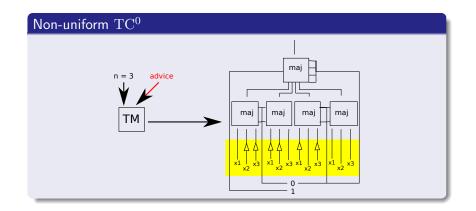
Non-uniform TC^0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

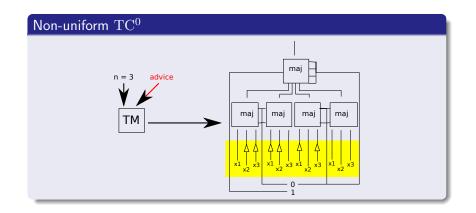




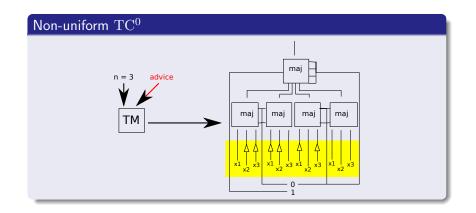
• Uniform: |advice| = 0



- Uniform: |advice| = 0
- Fully non-uniform: $|advice| \approx circuit size$



- Uniform: |advice| = 0
- Fully non-uniform: $|advice| \approx circuit size$
- Slightly non-uniform: |*advice*| << circuit size



- Uniform: |advice| = 0
- Fully non-uniform: $|advice| \approx circuit size$
- Slightly non-uniform: |*advice*| << circuit size

Why Non-uniform Lower Bounds?

Why Non-uniform Lower Bounds?

• Search for mathematical truth...

Why Non-uniform Lower Bounds?

- Search for mathematical truth...
- Crytpo adversary

8/22

Why Non-uniform Lower Bounds?

- Search for mathematical truth...
- Crytpo adversary
- Connections to derandomization

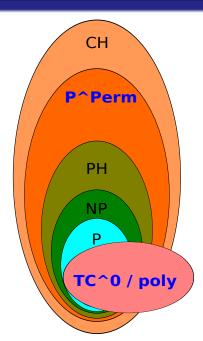
Why Non-uniform Lower Bounds?

- Search for mathematical truth...
- Crytpo adversary
- Connections to derandomization $E \nsubseteq SIZE(2^{\epsilon n}) \Rightarrow BPP=P$

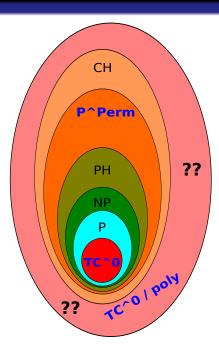
Why Non-uniform Lower Bounds?• Search for mathematical truth...• Crytpo adversary• Connections to derandomization $E \nsubseteq SIZE(2^{\epsilon n}) \Rightarrow BPP=P$ derandomization \Rightarrow non-uniform lower bounds[KI04, AM11]

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ○ ○
8/22





Main Result, Definitions and Context



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Theorem (Main Result)

- d = O(1), a = poly-log(n), $s \ s.t. \ s^{(O(1))}(n) < 2^n$
- $d = o(\log \log n)$, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)}$

•
$$d = O(1)$$
, $a = n^{o(1)}$, $s = n^{O(1)}$

イロト 不得下 イヨト イヨト 二日

Theorem (Main Result)

- d = O(1), a = poly-log(n), $s \ s.t. \ s^{(O(1))}(n) < 2^n \ \approx \Rightarrow [All99]$
- $d = o(\log \log n), a = poly-log(n), s = n^{O(1)}$

•
$$d = O(1)$$
, $a = n^{o(1)}$, $s = n^{O(1)}$

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n \ \approx \Rightarrow$ [All99]

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)} \implies [KP09]$

•
$$d = O(1)$$
, $a = n^{o(1)}$, $s = n^{O(1)}$

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n \ \approx \Rightarrow$ [All99]

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)} \implies [KP09]$

•
$$d = O(1), a = n^{o(1)}, s = n^{O(1)} \Rightarrow [JS12]$$

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

10/22

Theorem (Main Result)

Lower bound for Perm on threshold circuits with depth d, advice a, size s s.t.

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n \ \approx \Rightarrow$ [All99]

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)} \implies [KP09]$

•
$$d = O(1), a = n^{o(1)}, s = n^{O(1)} \Rightarrow [JS12]$$

• Tradeoff between d, a, s

Lower bound for Perm on threshold circuits with depth d, advice a, size s s.t.

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n \ \approx \Rightarrow$ [All99]

•
$$d = o(\log \log n), a = \operatorname{poly-log}(n), s = n^{O(1)} \implies [KP09]$$

•
$$d = O(1), a = n^{o(1)}, s = n^{O(1)} \Rightarrow [JS12]$$

Compare to Known Results, Conjectures

Lower bound for Perm on threshold circuits with depth d, advice a, size s s.t.

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \text{ s.t. } s^{(O(1))}(n) < 2^n \approx \text{[All99]}$

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)} \implies [KP09]$

•
$$d = O(1), a = n^{o(1)}, s = n^{O(1)} \Rightarrow [JS12]$$

Compare to Known Results, Conjectures

• Ryser's formula for Perm: $O(n \cdot 2^n)$ time

10 / 22

イロト 不得 と イヨト イヨト

Lower bound for Perm on threshold circuits with depth d, advice a, size s s.t.

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n \ \approx \Rightarrow$ [All99]

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)} \implies [KP09]$

•
$$d = O(1), a = n^{o(1)}, s = n^{O(1)} \Rightarrow [JS12]$$

Compare to Known Results, Conjectures

- Ryser's formula for Perm: $O(n \cdot 2^n)$ time
- Parity $\not\subseteq$ non-uniform AC⁰ size $2^{n^{o(1)}}$ [Hås87]

Lower bound for Perm on threshold circuits with depth d, advice a, size s s.t.

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n \ \approx \Rightarrow$ [All99]

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)} \implies [KP09]$

•
$$d = O(1), a = n^{o(1)}, s = n^{O(1)} \Rightarrow [JS12]$$

Compare to Known Results, Conjectures

- Ryser's formula for Perm: $O(n \cdot 2^n)$ time
- Parity \nsubseteq non-uniform AC⁰ size $2^{n^{o(1)}}$ [Hås87]
- NEXP \nsubseteq non-uniform ACC⁰ poly size [Wil11]

Lower bound for Perm on threshold circuits with depth d, advice a, size s s.t.

•
$$d = O(1)$$
, $a = \text{poly-log}(n)$, $s \ s.t. \ s^{(O(1))}(n) < 2^n \ \approx \Rightarrow$ [All99]

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)} \implies [KP09]$

•
$$d = O(1), a = n^{o(1)}, s = n^{O(1)} \Rightarrow [JS12]$$

Compare to Known Results, Conjectures

- Ryser's formula for Perm: $O(n \cdot 2^n)$ time
- Parity \nsubseteq non-uniform AC⁰ size $2^{n^{o(1)}}$ [Hås87]
- NEXP ⊈ non-uniform ACC⁰ poly size [Wil11]
- Conjecture: NP, Perm \nsubseteq SIZE $(2^{n^{o(1)}})$

イロン 不通 と 不可 と イヨン

Proofs

Lower bound for Perm on threshold circuits with depth d, advice a, size s s.t.

• d = O(1), a = poly-log(n), s s.t. $s^{(O(1))}(n) < 2^n$

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)}$

- d = O(1), $a = n^{o(1)}$, $s = n^{O(1)}$
- Tradeoff between d, a, s

Lower bound for Perm on threshold circuits with depth d, advice a, size s s.t.

• d = O(1), a = poly-log(n), s s.t. $s^{(O(1))}(n) < 2^n$

•
$$d = o(\log \log n)$$
, $a = \operatorname{poly-log}(n)$, $s = n^{O(1)}$

- d = O(1), $a = n^{o(1)}$, $s = n^{O(1)}$
- Tradeoff between d, a, s

Theorem

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Theorem

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \operatorname{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Perm \notin *TC* circuits of depth O(1), advice $n^{o(1)}$, and poly size.

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \operatorname{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Perm \notin *TC* circuits of depth O(1), advice $n^{o(1)}$, and poly size.

- $P^{\text{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Perm \notin *TC* circuits of depth O(1), advice $n^{o(1)}$, and poly size.

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \operatorname{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Perm \notin *TC* circuits of depth O(1), advice $n^{o(1)}$, and poly size.

- $P^{\text{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Perm \notin *TC* circuits of depth O(1), advice $n^{o(1)}$, and poly size.

- $P^{\text{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Perm \notin *TC* circuits of depth O(1), advice $n^{o(1)}$, and poly size.

- $P^{\text{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

Proof

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

theorem false:

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

Proof

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

theorem false: $P^{Perm} \subseteq P^{TC^0} + n^{o(1)}$ advice

Perm \notin *TC circuits of depth O*(1), advice $n^{o(1)}$, and poly size.

Proof

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

theorem false: $P^{Perm} \subseteq P^{TC^0} + n^{o(1)} \text{ advice} \subseteq P + n^{o(1)} \text{ advice}$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ シ へ (~ 13/22

Perm \notin *TC* circuits of depth O(1), advice $n^{o(1)}$, and poly size.

Proof

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

theorem false: $P^{\text{Perm}} \subseteq P^{\text{TC}^{0}} + n^{o(1)} \text{ advice} \qquad \subseteq P + n^{o(1)} \text{ advice} \\
\subset \text{TC}^{0} + n^{o(1)} \text{ advice}$

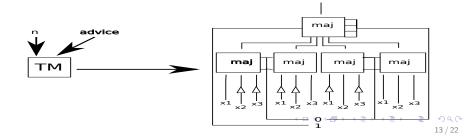
> ・ロ ・ ・ 一部 ・ ・ 注 ・ く 注 ・ う Q (や 13/22

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\text{Perm}} \subseteq \mathsf{SIZE}(O(n))$

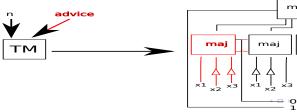
Perm \notin *TC circuits of depth O*(1), *advice n*^{o(1)}, *and poly size*.

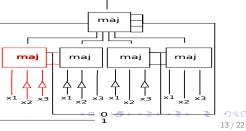
- $\mathbb{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$



Perm \notin *TC circuits of depth O*(1), *advice n*^{o(1)}, *and poly size*.

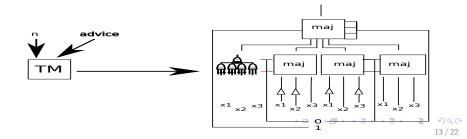
- $\mathbb{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$





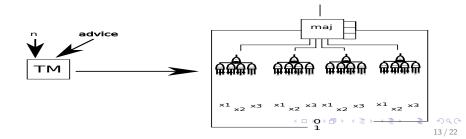
Perm \notin *TC circuits of depth O*(1), *advice n*^{o(1)}, *and poly size*.

- $\mathbb{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$



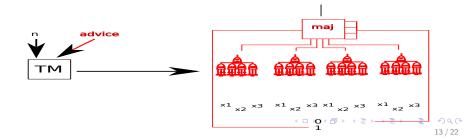
Perm \notin *TC circuits of depth O*(1), *advice n*^{o(1)}, *and poly size*.

- $\mathbb{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$



Perm \notin *TC circuits of depth O*(1), *advice n*^{o(1)}, *and poly size*.

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$



Perm \notin *TC circuits of depth O*(1), *advice n*^{o(1)}, *and poly size*.

Proof

- $\mathbb{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

Proof

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\text{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Level 1: PP question size $n^{o(1)} + \log(\text{poly}(n))$

・ロ ・ ・ 一部 ・ く 言 ・ く 言 ・ う へ (や 13/22

Perm \notin *TC* circuits of depth O(1), advice $n^{o(1)}$, and poly size.

Proof

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\text{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Level 1: PP question size $n^{o(1)} + \log(\text{poly}(n))$ $\Rightarrow (n^{o(1)})^c = n^{o(1)}$ size circuits

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

Proof

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\operatorname{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Level 2: PP question size $n^{o(1)} + \log(poly(n) \cdot n^{o(1)})$

Theorem

Perm \notin *TC* circuits of depth O(1), advice $n^{o(1)}$, and poly size.

Proof

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\text{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Level 2: PP question size $n^{o(1)} + \log(\text{poly}(n) \cdot n^{o(1)})$ $\Rightarrow (n^{o(1)})^c = n^{o(1)}$ size circuits

Theorem

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

Proof

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\text{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Level d: \Rightarrow $n^{o(1)}$ size circuit

Theorem

Perm \notin *TC circuits of depth O*(1), *advice* $n^{o(1)}$, *and poly size*.

Proof

- $\mathbf{P}^{\operatorname{Perm}} \nsubseteq \mathsf{SIZE}(n^k)$
- theorem false $\Rightarrow P^{Perm} \subseteq TC^0$ with $n^{o(1)}$ advice
- theorem false $\Rightarrow P^{\text{Perm}} \subseteq \mathsf{SIZE}(O(n))$

Level $d: \Rightarrow n^{o(1)}$ size circuit (size O(n) really)

Perm \notin TC circuits of depth O(1), advice $n^{o(1)}$, and poly size.

Perm \notin TC circuits of depth O(1), advice $n^{o(1)}$, and poly size.

Perm \notin *TC circuits of depth O*(1), advice $n^{o(1)}$, and poly size.

Proof of [CK12]

TH-time-depth(n^{k+1}, d) ⊈
 TH-time-depth(n^k, d) + o(n) advice

Perm \notin *TC circuits of depth O*(1), advice $n^{o(1)}$, and poly size.

Proof of [CK12]

- TH-time-depth(n^{k+1}, d) ⊈
 TH-time-depth(n^k, d) + o(n) advice
- P has TC^0 size n^k , depth d, advice $n^{o(1)} \Rightarrow$ TH-time-depth $(n^{k+1}, d) \nsubseteq P + n^{o(1)}$ advice

Perm \notin *TC* circuits of depth O(1), advice $n^{o(1)}$, and poly size.

Proof of [CK12]

- TH-time-depth(n^{k+1}, d) ⊈
 TH-time-depth(n^k, d) + o(n) advice
- P has TC^0 size n^k , depth d, advice $n^{o(1)} \Rightarrow$ TH-time-depth $(n^{k+1}, d) \nsubseteq P + n^{o(1)}$ advice
- theorem false: TH-time-depth $(n^{k+1}, d) \subseteq P + n^{o(1)}$ advice

What Next?

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (~ 15/22

Extensions

• Poly advice

<ロ><回><一><一><一><一><一><一><一</th>16/22

Extensions

Poly advice (obstacles - natural pfs [RR97], relativization [AW09])

16/22

Extensions

- Poly advice (obstacles natural pfs [RR97], relativization [AW09])
- Average-case, almost-everywhere hardness

16/22

Extensions

- Poly advice (obstacles natural pfs [RR97], relativization [AW09])
- Average-case, almost-everywhere hardness
- ...

16/22

Extensions

- Poly advice (obstacles natural pfs [RR97], relativization [AW09])
- Average-case, almost-everywhere hardness

• ...

• Make use nice properties of permanent

Extensions

- Poly advice (obstacles natural pfs [RR97], relativization [AW09])
- Average-case, almost-everywhere hardness
- ...
- Make use nice properties of permanent
 - low-degree poly, downward/random self-reduction, ...

Thank you.

Slides online at http://www.kinnejeff.com

References I

Eric Allender.

The permanent requires large uniform threshold circuits. Chicago Journal of Theoretical Computer Science, 1999.

- Scott Aaronson and Dieter van Melkebeek. On circuit lower bounds from derandomization. Theory of Computing, 7(1):177–184, 2011.
- Scott Aaronson and Avi Wigderson.
 Algebrization: A new barrier in complexity theory.
 ACM Transactions on Computation Theory, 1(1):1–54, 2009.

References II

Ruiwen Chen and Valentine Kabanets.

Lower bounds against weakly uniform circuits.

In <u>Proceedings of the Annual International Computing and</u> Combinatorics Conference (COCOON), pages 408–419, 2012.

Johan Håstad.

Computational Limitations of Small-Depth Circuits.

MIT Press, Cambridge, MA, USA, 1987.

Russell Impagliazzo and Avi Wigderson.

 $\mathsf{P}=\mathsf{BPP}$ if E requires exponential circuits: Derandomizing the XOR lemma.

In <u>Proceedings of the ACM Symposium on Theory of</u> Computing (STOC), pages 220–229, 1997.

References III

Maurice Jansen and Rahul Santhanam.

Marginal hitting sets imply super-polynomial lower bounds for permanent.

In Innovations in Theoretical Computer Science, 2012.

Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds.

Computational Complexity, 13(1/2):1-46, 2004.

References IV

Pascal Koiran and Sylvain Perifel.

A superpolynomial lower bound on the size of uniform non-constant-depth threshold circuits for the permanent. In <u>Proceedings of the IEEE Conference on Computational</u> <u>Complexity (CCC)</u>, pages 35–40, 2009.

- Moni Naor, Omer Reingold, and Alon Rosen. Pseudorandom functions and factoring. SIAM Journal on Computing, 31(5):1383–1404, 2002.
- Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and System Sciences, 55(1):24–35, 1997.

References V

Ryan Williams.

Non-uniform ACC circuit lower bounds.

In Proceedings of the IEEE Conference on Computational

Complexity (CCC), pages 115–125, 2011.