# On Beating Large Prime Records

### Jeff Kinne, Geoff Exoo

Indiana State University

#### Indiana Academy of Sciences, March 15, 2014

1/12

No divisors/factors except 1 and itself.

No divisors/factors except 1 and itself. 5

No divisors/factors except 1 and itself. 5 - yes.

No divisors/factors except 1 and itself. 5 - yes. 9

No divisors/factors except 1 and itself. 5 - yes. 9 - no.

No divisors/factors except 1 and itself. **5** - yes. **9** - no. 2, 3, 5, 7, 11, 13, 17, 19, ...

No divisors/factors except 1 and itself.  ${\bf 5}$  - yes.  ${\bf 9}$  - no. 2, 3, 5, 7, 11, 13, 17, 19, ...

イロン イロン イヨン イヨン 二年

2/12

#### Goal:

No divisors/factors except 1 and itself. **5** - yes. **9** - no. 2, 3, 5, 7, 11, 13, 17, 19, ...

Goal: find really, really, really large prime numbers

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ り へ (\*) 2/12

No divisors/factors except 1 and itself. **5** - yes. **9** - no. 2, 3, 5, 7, 11, 13, 17, 19, ...

Goal: find really, really, really large prime numbers

Why:

No divisors/factors except 1 and itself. **5** - yes. **9** - no. 2, 3, 5, 7, 11, 13, 17, 19, ...

Goal: find really, really, really large prime numbers

Why: cryptography, error correction...

No divisors/factors except 1 and itself. **5** - yes. **9** - no. 2, 3, 5, 7, 11, 13, 17, 19, ...

Goal: find really, really, really large prime numbers

Why: cryptography, error correction... But, really – for the shear thrill of it

No divisors/factors except 1 and itself. **5** - yes. **9** - no. 2, 3, 5, 7, 11, 13, 17, 19, ...

Goal: find really, really, really large prime numbers

Why: cryptography, error correction... But, really – for the shear thrill of it History: ancient Greeks, ... Renaissance mathematicians, ...

| year | digits | discoverer/notes |  |
|------|--------|------------------|--|
| 1588 | 6      | Cataldi          |  |
| 1772 | 10     | Euler            |  |
| 1867 | 13     | Landry           |  |

| year | digits | discoverer/notes               |
|------|--------|--------------------------------|
| 1588 | 6      | Cataldi                        |
| 1772 | 10     | Euler                          |
| 1867 | 13     | Landry                         |
| 1876 | 39     | Lucas, 1st record w/ Lucas thm |

| year | digits | discoverer/notes               |
|------|--------|--------------------------------|
| 1588 | 6      | Cataldi                        |
| 1772 | 10     | Euler                          |
| 1867 | 13     | Landry                         |
| 1876 | 39     | Lucas, 1st record w/ Lucas thm |
| 1951 | 44     | Ferrier, mechanical calc       |

| year | digits | discoverer/notes                  |
|------|--------|-----------------------------------|
| 1588 | 6      | Cataldi                           |
| 1772 | 10     | Euler                             |
| 1867 | 13     | Landry                            |
| 1876 | 39     | Lucas, 1st record w/ Lucas thm    |
| 1951 | 44     | Ferrier, mechanical calc          |
| 1951 | 79     | Miller & Wheeler, EDSAC1 computer |

| year | digits  | discoverer/notes                  |
|------|---------|-----------------------------------|
| 1588 | 6       | Cataldi                           |
| 1772 | 10      | Euler                             |
| 1867 | 13      | Landry                            |
| 1876 | 39      | Lucas, 1st record w/ Lucas thm    |
| 1951 | 44      | Ferrier, mechanical calc          |
| 1951 | 79      | Miller & Wheeler, EDSAC1 computer |
| 1953 | 687     | Robinson, SWAC                    |
| 1963 | 2,917   | Gillies, ILLIAC 2                 |
| 1973 | 6,002   | Tuckerman, IBM360/91              |
| 1983 | 39,751  | Slowinski, Cray X-MP              |
| 1993 | 227,832 | Slowinski et al., Cray-2          |

| year | digits    | discoverer/notes                  |
|------|-----------|-----------------------------------|
| 1588 | 6         | Cataldi                           |
| 1772 | 10        | Euler                             |
| 1867 | 13        | Landry                            |
| 1876 | 39        | Lucas, 1st record w/ Lucas thm    |
| 1951 | 44        | Ferrier, mechanical calc          |
| 1951 | 79        | Miller & Wheeler, EDSAC1 computer |
| 1953 | 687       | Robinson, <b>SWAC</b>             |
| 1963 | 2,917     | Gillies, ILLIAC 2                 |
| 1973 | 6,002     | Tuckerman, <b>IBM360/91</b>       |
| 1983 | 39,751    | Slowinski, Cray X-MP              |
| 1993 | 227,832   | Slowinski et al., Cray-2          |
| 2003 | 6,320,430 | GIMPS, Woltman, thousands of PC's |

| year | digits     | discoverer/notes                  |
|------|------------|-----------------------------------|
| 1588 | 6          | Cataldi                           |
| 1772 | 10         | Euler                             |
| 1867 | 13         | Landry                            |
| 1876 | 39         | Lucas, 1st record w/ Lucas thm    |
| 1951 | 44         | Ferrier, mechanical calc          |
| 1951 | 79         | Miller & Wheeler, EDSAC1 computer |
| 1953 | 687        | Robinson, SWAC                    |
| 1963 | 2,917      | Gillies, ILLIAC 2                 |
| 1973 | 6,002      | Tuckerman, IBM360/91              |
| 1983 | 39,751     | Slowinski, Cray X-MP              |
| 1993 | 227,832    | Slowinski et al., Cray-2          |
| 2003 | 6,320,430  | GIMPS, Woltman, thousands of PC's |
| 2013 | 17,425,170 | GIMPS, Woltman, thousands of PC's |

- Euclid: No, there are infinitely many prime numbers

- Euclid: No, there are infinitely many prime numbers

If you pick a random integer, what are the chances it is prime?

- Euclid: No, there are infinitely many prime numbers

If you pick a random integer, what are the chances it is prime?

Prime number theorem

- Euclid: No, there are infinitely many prime numbers

If you pick a random integer, what are the chances it is prime?

#### Prime number theorem

Pick a random integer between 1 and x.

- Euclid: No, there are infinitely many prime numbers

If you pick a random integer, what are the chances it is prime?

#### Prime number theorem

Pick a random integer between 1 and x. The chance it is prime is about  $\frac{1}{\ln x}$ .

- Euclid: No, there are infinitely many prime numbers

If you pick a random integer, what are the chances it is prime?

4/12

#### Prime number theorem

Pick a random integer between 1 and x. The chance it is prime is about  $\frac{1}{\ln x}$ .

Note: 
$$\frac{1}{\ln(100)} = 0.21...$$

## Is this 100 digit number prime?

## Is this 100 digit number prime? - use trial division

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

### Is this 100 digit number prime? - use trial division

• If even, done  $\Rightarrow$  not prime

### Is this 100 digit number prime? - use trial division

- If even, done  $\Rightarrow$  not prime
- If multiple of 3, done  $\Rightarrow$  not prime

(人間) システン イラン

5/12

### Is this 100 digit number prime? - use trial division

- If even, done  $\Rightarrow$  not prime
- If multiple of 3, done  $\Rightarrow$  not prime
- If multiple of 5, done  $\Rightarrow$  not prime

### Is this 100 digit number prime? - use trial division

- If even, done  $\Rightarrow$  not prime
- If multiple of 3, done  $\Rightarrow$  not prime
- If multiple of 5, done  $\Rightarrow$  not prime

• ...
- If even, done  $\Rightarrow$  not prime
- If multiple of 3, done  $\Rightarrow$  not prime
- If multiple of 5, done  $\Rightarrow$  not prime

• ...

• Check multiples up to ...

- If even, done  $\Rightarrow$  not prime
- If multiple of 3, done  $\Rightarrow$  not prime
- If multiple of 5, done  $\Rightarrow$  not prime
- ...
- Check multiples up to ... sqrt of the number

- If even, done  $\Rightarrow$  not prime
- If multiple of 3, done  $\Rightarrow$  not prime
- If multiple of 5, done  $\Rightarrow$  not prime
- ...
- Check multiples up to ... sqrt of the number
- If no divisors found, number is prime

- If even, done  $\Rightarrow$  not prime
- If multiple of 3, done  $\Rightarrow$  not prime
- If multiple of 5, done  $\Rightarrow$  not prime
- ...
- Check multiples up to ... sqrt of the number
- If no divisors found, number is prime

#### • Very fast on most composite numbers

- If even, done  $\Rightarrow$  not prime
- If multiple of 3, done  $\Rightarrow$  not prime
- If multiple of 5, done  $\Rightarrow$  not prime
- ...
- Check multiples up to ... sqrt of the number
- If no divisors found, number is prime
- Very fast on most composite numbers
- Very slow to prove a number prime

- If even, done  $\Rightarrow$  not prime
- If multiple of 3, done  $\Rightarrow$  not prime
- If multiple of 5, done  $\Rightarrow$  not prime
- ...
- Check multiples up to ... sqrt of the number
- If no divisors found, number is prime
- Very fast on most composite numbers
- Very slow to prove a number prime (sqrt of 100 digit number  $\approx 10^{50}$ )

### "Big" to a computer?

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → <

### "Big" to a computer?

• 3Gz CPU means

#### "Big" to a computer?

 $\bullet~3Gz~CPU~means < 3\cdot 10^9~instructions/second$ 

#### **'Big''** to a computer?

- $\bullet~3Gz~CPU$  means  $< 3\cdot 10^9$  instructions/second
- If you have 1000 CPU's,

#### **'Big**" to a computer?

- 3Gz CPU means  $< 3 \cdot 10^9$  instructions/second
- If you have 1000 CPU's,  $< 3\cdot 10^{12}$  instructions/second

#### **'Big**" to a computer?

- 3Gz CPU means  $< 3\cdot 10^9$  instructions/second
- If you have 1000 CPU's,  $< 3\cdot 10^{12}$  instructions/second  $$<9.5\cdot10^{19}$$  instructions/year

#### **'Big**" to a computer?

- 3Gz CPU means  $< 3 \cdot 10^9$  instructions/second
- If you have 1000 CPU's,  $< 3\cdot 10^{12}$  instructions/second  $$<9.5\cdot10^{19}$$  instructions/year

### • Trial divison too slow for prime proof!

#### **'Big''** to a computer?

- 3Gz CPU means  $< 3 \cdot 10^9$  instructions/second
- If you have 1000 CPU's,  $< 3\cdot 10^{12}$  instructions/second  $$<9.5\cdot10^{19}$$  instructions/year

- Trial divison too slow for prime proof!
- We need a faster method...

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ...

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

Deterministic primality tests that work for all integers

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

### Deterministic primality tests that work for all integers

- limited to a few hundred digits

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

### Deterministic primality tests that work for all integers

- limited to a few hundred digits

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

# Deterministic primality tests that work for all integers - limited to a few hundred digits

#### Millions of digits...

Fast prime proofs that work only for special integers

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

# Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

### Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .
  - 1,

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

### Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .
  - 1, 3,

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

# Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .
  - 1, 3, 7,

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

# Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .
  - 1, 3, 7, 15, ...

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

# Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .
  - 1, 3, 7, 15, ...
- In general:

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

# Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .
  - 1, 3, 7, 15, ...
- In general:  $p_1 \cdot p_2 \cdot p_3 \cdot \ldots \cdot p_j \pm 1$ .

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

# Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .
  - 1, 3, 7, 15, ...
- In general:  $p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_j \pm 1$ .  $2^{57885161} - 1$

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

# Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .
  - 1, 3, 7, 15, ...
- In general:  $p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_j \pm 1$ .  $2^{57885161} - 1$  $19249 \cdot 2^{13018586} + 1$

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

# Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .
  - 1, 3, 7, 15, ...

```
• In general: p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_j \pm 1.

2^{57885161} - 1

19249 \cdot 2^{13018586} + 1

475856^{524288} + 1
```

Fermat, Miller-Rabin, Solovay-Strassen, AKS, Elliptic curves, ... All either randomized or not fast enough

# Deterministic primality tests that work for all integers - limited to a few hundred digits

- Fast prime proofs that work only for special integers
- Mersenne number:  $2^k 1$ .
  - 1, 3, 7, 15, ...

```
• In general: p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_j \pm 1.

2^{57885161} - 1

19249 \cdot 2^{13018586} + 1

475856^{524288} + 1
```

• 208th largest prime overall,

• 208th largest prime overall, 712,748 digits long

- 208th largest prime overall, 712,748 digits long
- Twin Prime :
- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime.

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime. 3 and 5

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime.
  - 3 and 5 yes.

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime. 3 and 5 - yes. 7 and 9

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime. 3 and 5 - yes. 7 and 9 - no.

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime.
  3 and 5 yes. 7 and 9 no.
  14th largest :

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime.
   3 and 5 yes. 7 and 9 no.
   14th largest : 2<sup>1799</sup> · 3<sup>137</sup> · 474579581429<sup>465</sup> · 443749004359<sup>326</sup> · 644541865141<sup>488</sup> .
   561014826899<sup>421</sup> · 725590842793<sup>493</sup> · 623163115793<sup>476</sup> · 383657519591<sup>332</sup> 1

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime.
   3 and 5 yes. 7 and 9 no.
   14th largest : 2<sup>1799</sup> · 3<sup>137</sup> · 474579581429<sup>465</sup> · 443749004359<sup>326</sup> · 644541865141<sup>488</sup> · 561014826899<sup>421</sup> · 725590842793<sup>493</sup> · 623163115793<sup>476</sup> · 383657519591<sup>332</sup> 1
   Sophie Germain Prime :

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime.
   3 and 5 yes. 7 and 9 no.
   14th largest : 2<sup>1799</sup> · 3<sup>137</sup> · 474579581429<sup>465</sup> · 443749004359<sup>326</sup> · 644541865141<sup>488</sup> · 561014826899<sup>421</sup> · 725590842793<sup>493</sup> · 623163115793<sup>476</sup> · 383657519591<sup>332</sup> 1
- Sophie Germain Prime : p and 2p + 1 are both prime.

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime. 3 and 5 - yes. 7 and 9 - no. 14th largest :  $2^{1799} \cdot 3^{137} \cdot 474579581429^{465} \cdot 443749004359^{326} \cdot 644541865141^{488} \cdot 561014826899^{421} \cdot 725590842793^{493} \cdot 623163115793^{476} \cdot 383657519591^{332} - 1$
- Sophie Germain Prime : *p* and 2*p* + 1 are both prime. 12th largest :

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime. 3 and 5 - yes. 7 and 9 - no. **14th largest** :  $2^{1799} \cdot 3^{137} \cdot 474579581429^{465} \cdot 443749004359^{326} \cdot 644541865141^{488}$ . 561014826899<sup>421</sup> · 725590842793<sup>493</sup> · 623163115793<sup>476</sup> · 383657519591^{332} - 1
- Sophie Germain Prime : p and 2p + 1 are both prime.
   12th largest : 2<sup>1562</sup> · 3<sup>109</sup> · 828814575031<sup>420</sup> · 955637315837<sup>480</sup> · 672196801383<sup>498</sup> .
   162946224587<sup>484</sup> · 258724139309<sup>335</sup> · 327170641169<sup>422</sup> · 880151556687<sup>437</sup> 1

- 208th largest prime overall, 712,748 digits long
- Twin Prime : p and p + 2 are both prime. 3 and 5 - yes. 7 and 9 - no. **14th largest** :  $2^{1799} \cdot 3^{137} \cdot 474579581429^{465} \cdot 443749004359^{326} \cdot 644541865141^{488}$ . 561014826899<sup>421</sup> · 725590842793<sup>493</sup> · 623163115793<sup>476</sup> · 383657519591^{332} - 1
- Sophie Germain Prime : p and 2p + 1 are both prime.
   12th largest : 2<sup>1562</sup> · 3<sup>109</sup> · 828814575031<sup>420</sup> · 955637315837<sup>480</sup> · 672196801383<sup>498</sup> .
   162946224587<sup>484</sup> · 258724139309<sup>335</sup> · 327170641169<sup>422</sup> · 880151556687<sup>437</sup> 1











- 75 PCs running continuously
- Another 75 or so on the weekends

- 75 PCs running continuously
- Another 75 or so on the weekends
- Use more PCs...

- 75 PCs running continuously
- Another 75 or so on the weekends
- Use more PCs...
- Use graphic cards/GPUs...

• Is x prime?

- Is x prime?
- Let *a* between 2 and x 1.

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.

• *x* = 7.

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.

• *x* = 7. *a* = 2.

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.

• 
$$x = 7$$
.  $a = 2$ .  $a^{x-1}$ 

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.

• 
$$x = 7$$
.  $a = 2$ .  $a^{x-1} = 2^6$ 

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.

• 
$$x = 7$$
.  $a = 2$ .  $a^{x-1} = 2^6 = 64$ .

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.

• 
$$x = 7$$
.  $a = 2$ .  $a^{x-1} = 2^6 = 64$ . 64 mod  $7 =$ 

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.

## • x = 7. a = 2. $a^{x-1} = 2^6 = 64$ . 64 mod 7 = 1.

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.
- *x* = 6.

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.
- *x* = 6. *a* = 2.

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.

• 
$$x = 6$$
.  $a = 2$ .  $a^{x-1}$
- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.

• 
$$x = 6$$
.  $a = 2$ .  $a^{x-1} = 2^5$ 

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.

• 
$$x = 6$$
.  $a = 2$ .  $a^{x-1} = 2^5 = 32$ .

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.
- x = 6. a = 2.  $a^{x-1} = 2^5 = 32$ . 32 mod 6 =

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.
- x = 6. a = 2.  $a^{x-1} = 2^5 = 32$ . 32 mod 6 = 2.

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.
- x = 6. a = 2. a<sup>x-1</sup> = 2<sup>5</sup> = 32. 32 mod 6 = 2.
  6 is not prime.

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.
- x = 6. a = 2. a<sup>x-1</sup> = 2<sup>5</sup> = 32. 32 mod 6 = 2.
  6 is not prime.
- Running time: pretty fast,

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.
- x = 6. a = 2. a<sup>x-1</sup> = 2<sup>5</sup> = 32. 32 mod 6 = 2.
  6 is not prime.
- Running time: pretty fast, see google/wikipedia

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

- Is x prime?
- Let a between 2 and x 1.
- If  $a^{x-1} \mod x \neq 1$ , x is not prime.
- x = 7. a = 2. a<sup>x-1</sup> = 2<sup>6</sup> = 64. 64 mod 7 = 1.
  7 might be prime.
- x = 6. a = 2. a<sup>x-1</sup> = 2<sup>5</sup> = 32. 32 mod 6 = 2.
  6 is not prime.
- Running time: pretty fast, see google/wikipedia

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ の へ ()
11/12

• Choose a number N (such that  $N \pm 1$  is factored)

- Choose a number N (such that  $N \pm 1$  is factored)
  - E.g., set  $N = k \cdot 2^{3,330,000} + 1$ , k small

- Choose a number N (such that  $N \pm 1$  is factored)
  - E.g., set  $N = k \cdot 2^{3,330,000} + 1$ , k small
- Test *N* for small factors

- **Choose a number** N (such that  $N \pm 1$  is factored)
  - E.g., set  $N = k \cdot 2^{3,330,000} + 1$ , k small
- Test *N* for small factors [pick new *N* if any found]

- Choose a number N (such that  $N \pm 1$  is factored)
  - E.g., set  $N = k \cdot 2^{3,330,000} + 1$ , k small
- Test *N* for small factors [pick new *N* if any found]
- Run Fermat prime test on N

- Choose a number N (such that  $N \pm 1$  is factored)
  - E.g., set  $N = k \cdot 2^{3,330,000} + 1$ , k small
- Test *N* for small factors [pick new *N* if any found]
- Run Fermat prime test on N [pick new N if fails]

- Choose a number N (such that  $N \pm 1$  is factored)
  - E.g., set  $N = k \cdot 2^{3,330,000} + 1$ , k small
- Test N for small factors [pick new N if any found]
- Run Fermat prime test on N [pick new N if fails]

イロト 不得 トイヨト イヨト 二日

Run Lucas test to prove N prime

- Choose a number N (such that  $N \pm 1$  is factored)
  - E.g., set  $N = k \cdot 2^{3,330,000} + 1$ , k small
- Test N for small factors [pick new N if any found]
- Run Fermat prime test on N [pick new N if fails]
- Run Lucas test to prove N prime [pick new N if fails]

- Choose a number N (such that  $N \pm 1$  is factored)
  - E.g., set  $N = k \cdot 2^{3,330,000} + 1$ , k small
- Test N for small factors [pick new N if any found]
- Run Fermat prime test on N [pick new N if fails]
- Run Lucas test to prove N prime [pick new N if fails]
- Repeat until all tests passed

# Thank You, The End

<ロ><回><一><一><一><一><一><一><一</th>12/12

# Thank You, The End

#### Links

- kinnejeff.com/talks.html these slides, and a more detailed talk about this research
- Prime Pages, by Chris Caldwell THE source of information on prime records, and the official prime records database
- Software/libraries we use: GMP, OpenPFGW

#### Ackowledgments

- Funding : Indiana Academy of Sciences; Indiana State University, Office of the President
- **Computing** : Indiana State University Office of Information Technology; Departments of Mathematics and Computer Science, Chemistry and Physics, Languages Literatures and Linguistics, Electronics and Computer Engineering Technology, Built Environment