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i,j) for any i ∈ [n]
Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)
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NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong
Guess and verify set of false positives
Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit
Guess a duplicate, not all duplicates can be false negatives
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Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms
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Derandomization

If all languages solvable by bounded-error randomized monotone
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|PrX←D[C(X) = 1] - PrX←Un [C(X) = 1]| ≥ ε

C ( ε
n+1 )-distinguishes for x with |x|=k

If threshold is not ε′=( ε
2(n+1) )-distinguisher, then Cmon is
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Recap

How Powerful is Randomness?

“Typically-correct” Derandomization

Hierarchy Theorems for Randomized Algorithms

Derandomizing Monotone Computations
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