
Derandomization Hierarchy Theorems Monotone Computations

Deterministic Simulations and Hierarchy Theorems
For Randomized Algorithms

Jeff Kinne

University of Wisconsin-Madison, Department of Computer Sciences

Thesis Defense, April 27, 2010

1 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

primality testing

undirected connectivity

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

primality testing

undirected connectivity

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

Circuits

primality testing

undirected connectivity

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

Circuits

No
primality testing

undirected connectivity

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

Communication complexity

Circuits

No
primality testing

undirected connectivity

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

Communication complexity

Circuits

Yes

No
primality testing

undirected connectivity

equality

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

Communication complexityInteractive proofs

Circuits

Yes

No
primality testing

undirected connectivity

equality

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

Communication complexityInteractive proofs

Circuits

YesYes?

No
primality testing

undirected connectivity

quantified Boolean formula equality

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

Communication complexityInteractive proofs

Circuits

YesYes?

No
primality testing

undirected connectivity

quantified Boolean formula equality

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

Communication complexityInteractive proofs

Circuits

YesYes?

No
No? primality testing

undirected connectivity

quantified Boolean formula equality

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Does Randomness Add Significant Power?

Communication complexityInteractive proofs

Circuits

YesYes?

No
No? primality testing

undirected connectivity

quantified Boolean formula equality

poly identity testing

Running Time /
Memory Space

2 / 40

Derandomization Hierarchy Theorems Monotone Computations

Outline

How Powerful is Randomness?

“Typically-correct” Derandomization

Hierarchy Theorems for Randomized Algorithms

Derandomizing Monotone Computations

3 / 40

Derandomization Hierarchy Theorems Monotone Computations

Outline

How Powerful is Randomness?

“Typically-correct” Derandomization

Hierarchy Theorems for Randomized Algorithms

Derandomizing Monotone Computations

3 / 40

Derandomization Hierarchy Theorems Monotone Computations

Outline

How Powerful is Randomness?

“Typically-correct” Derandomization

Hierarchy Theorems for Randomized Algorithms

Derandomizing Monotone Computations

3 / 40

Derandomization Hierarchy Theorems Monotone Computations

Outline

How Powerful is Randomness?

“Typically-correct” Derandomization

Hierarchy Theorems for Randomized Algorithms

Derandomizing Monotone Computations

3 / 40

Derandomization Hierarchy Theorems Monotone Computations

Outline

How Powerful is Randomness?

“Typically-correct” Derandomization

Hierarchy Theorems for Randomized Algorithms

Derandomizing Monotone Computations

3 / 40

Derandomization Hierarchy Theorems Monotone Computations

Randomized Algorithm

Bounded error: For every fixed input, correct with Pr > 99%

BPP: Bounded-error Probabilistic Poly time

BPL: Log space

4 / 40

Derandomization Hierarchy Theorems Monotone Computations

Randomized Algorithm

01 10 10 10
11 01 10

yes
/no

Bounded error: For every fixed input, correct with Pr > 99%

BPP: Bounded-error Probabilistic Poly time

BPL: Log space

4 / 40

Derandomization Hierarchy Theorems Monotone Computations

Randomized Algorithm

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Bounded error: For every fixed input, correct with Pr > 99%

BPP: Bounded-error Probabilistic Poly time

BPL: Log space

4 / 40

Derandomization Hierarchy Theorems Monotone Computations

Randomized Algorithm

Random Strings

good

bad

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Bounded error: For every fixed input, correct with Pr > 99%

BPP: Bounded-error Probabilistic Poly time

BPL: Log space

4 / 40

Derandomization Hierarchy Theorems Monotone Computations

Randomized Algorithm

Random Strings

good

bad

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Bounded error: For every fixed input, correct with Pr > 99%

BPP: Bounded-error Probabilistic Poly time

BPL: Log space

4 / 40

Derandomization Hierarchy Theorems Monotone Computations

Randomized Algorithm

Random Strings

good

bad

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Bounded error: For every fixed input, correct with Pr > 99%

BPP: Bounded-error Probabilistic Poly time

BPL: Log space

4 / 40

Derandomization Hierarchy Theorems Monotone Computations

Randomized Algorithm

Random Strings

good

bad

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Bounded error: For every fixed input, correct with Pr > 99%

BPP: Bounded-error Probabilistic Poly time BPL: Log space

4 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization

5 / 40

Derandomization Hierarchy Theorems Monotone Computations

Naive Derandomization

Random Strings

good

bad

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Try all possible random bit strings – exponentially many

6 / 40

Derandomization Hierarchy Theorems Monotone Computations

Naive Derandomization

Random Strings

good

bad

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Try all possible random bit strings – exponentially many

6 / 40

Derandomization Hierarchy Theorems Monotone Computations

Naive Derandomization

Random Strings

good

bad

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Try all possible random bit strings

– exponentially many

6 / 40

Derandomization Hierarchy Theorems Monotone Computations

Naive Derandomization

Random Strings

good

bad

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Try all possible random bit strings – exponentially many

6 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization – the Standard PRG Approach

Poly many strings to try

⇒ O(log n) seed, exp stretch

7 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization – the Standard PRG Approach

Random Strings

good

bad

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Poly many strings to try

⇒ O(log n) seed, exp stretch

7 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization – the Standard PRG Approach

Random Strings

good

bad

pseudo–random

01 10 10 10
11 01 10

yes
/no

p(x1, x2, x3, x4)
x1, ..., x4

Poly many strings to try

⇒ O(log n) seed, exp stretch

7 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization – the Standard PRG Approach

Random Strings

good

bad

pseudo–random

01 10 10 10
11 01 10

yes
/no

PRG

p(x1, x2, x3, x4)
x1, ..., x4

Poly many strings to try

⇒ O(log n) seed, exp stretch

7 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization – the Standard PRG Approach

Random Strings

good

bad

pseudo–random

01 10 10 10
11 01 10

yes
/no

PRG hard
function

H

p(x1, x2, x3, x4)
x1, ..., x4

Poly many strings to try

⇒ O(log n) seed, exp stretch

7 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization – the Standard PRG Approach

Random Strings

good

bad

pseudo–random

01 10 10 10
11 01 10

yes
/no

PRG hard
function

H

p(x1, x2, x3, x4)
x1, ..., x4

Poly many strings to try

⇒ O(log n) seed, exp stretch

7 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization – the Standard PRG Approach

Random Strings

good

bad

pseudo–random

01 10 10 10
11 01 10

yes
/no

PRG hard
function

H

p(x1, x2, x3, x4)
x1, ..., x4

Poly many strings to try ⇒ O(log n) seed, exp stretch

7 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Seed length n, poly stretch

8 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Random Strings

good

bad

pseudo–random

01 10 10 10
11 01 10

yes
/no

PRG hard
function

H

p(x1, x2, x3, x4)
x1, ..., x4

Seed length n, poly stretch

8 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Random Strings

good

bad

pseudo–random

01 10 10 10
11 01 10

yes
/no

PRG
11 01 10

hard
function

H

p(x1, x2, x3, x4)
x1, ..., x4

Seed length n, poly stretch

8 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Random Strings

good

bad

pseudo–random

01 10 10 10
11 01 10

yes
/no

PRG
11 01 10

hard
function

H

p(x1, x2, x3, x4)
x1, ..., x4

Seed length n, poly stretch

8 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Randomized algorithm M(x, r) computing language L

Deterministic simulation D(x) = M(x, E(x))

= M(G(x))

E pseudorandom even with seed revealed

G “seed-extending” PRG, G(x) = (x, E(x))

G PRG for tests checking M(x,r) = L(x) ⇒
PrX[M(G(X)) = L(X)] ≈ PrX, R[M(X,R) = L(X)] ≥ 1− ρ

Seed-extending PRG?

Cryptographic – No!
Derandomization – Yes! [NW, ...]

9 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Randomized algorithm M(x, r) computing language L
Deterministic simulation D(x) = M(x, E(x))

= M(G(x))

E pseudorandom even with seed revealed

G “seed-extending” PRG, G(x) = (x, E(x))

G PRG for tests checking M(x,r) = L(x) ⇒
PrX[M(G(X)) = L(X)] ≈ PrX, R[M(X,R) = L(X)] ≥ 1− ρ

Seed-extending PRG?

Cryptographic – No!
Derandomization – Yes! [NW, ...]

9 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Randomized algorithm M(x, r) computing language L
Deterministic simulation D(x) = M(x, E(x))

= M(G(x))

E pseudorandom even with seed revealed

G “seed-extending” PRG, G(x) = (x, E(x))

G PRG for tests checking M(x,r) = L(x) ⇒
PrX[M(G(X)) = L(X)] ≈ PrX, R[M(X,R) = L(X)] ≥ 1− ρ

Seed-extending PRG?

Cryptographic – No!
Derandomization – Yes! [NW, ...]

9 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Randomized algorithm M(x, r) computing language L
Deterministic simulation D(x) = M(x, E(x)) = M(G(x))

E pseudorandom even with seed revealed

G “seed-extending” PRG, G(x) = (x, E(x))

G PRG for tests checking M(x,r) = L(x) ⇒
PrX[M(G(X)) = L(X)] ≈ PrX, R[M(X,R) = L(X)] ≥ 1− ρ

Seed-extending PRG?

Cryptographic – No!
Derandomization – Yes! [NW, ...]

9 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Randomized algorithm M(x, r) computing language L
Deterministic simulation D(x) = M(x, E(x)) = M(G(x))

E pseudorandom even with seed revealed

G “seed-extending” PRG, G(x) = (x, E(x))

G PRG for tests checking M(x,r) = L(x)

⇒
PrX[M(G(X)) = L(X)] ≈ PrX, R[M(X,R) = L(X)] ≥ 1− ρ

Seed-extending PRG?

Cryptographic – No!
Derandomization – Yes! [NW, ...]

9 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Randomized algorithm M(x, r) computing language L
Deterministic simulation D(x) = M(x, E(x)) = M(G(x))

E pseudorandom even with seed revealed

G “seed-extending” PRG, G(x) = (x, E(x))

G PRG for tests checking M(x,r) = L(x) ⇒
PrX[M(G(X)) = L(X)] ≈ PrX, R[M(X,R) = L(X)]

≥ 1− ρ

Seed-extending PRG?

Cryptographic – No!
Derandomization – Yes! [NW, ...]

9 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Randomized algorithm M(x, r) computing language L
Deterministic simulation D(x) = M(x, E(x)) = M(G(x))

E pseudorandom even with seed revealed

G “seed-extending” PRG, G(x) = (x, E(x))

G PRG for tests checking M(x,r) = L(x) ⇒
PrX[M(G(X)) = L(X)] ≈ PrX, R[M(X,R) = L(X)] ≥ 1− ρ

Seed-extending PRG?

Cryptographic – No!
Derandomization – Yes! [NW, ...]

9 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Randomized algorithm M(x, r) computing language L
Deterministic simulation D(x) = M(x, E(x)) = M(G(x))

E pseudorandom even with seed revealed

G “seed-extending” PRG, G(x) = (x, E(x))

G PRG for tests checking M(x,r) = L(x) ⇒
PrX[M(G(X)) = L(X)] ≈ PrX, R[M(X,R) = L(X)] ≥ 1− ρ

Seed-extending PRG?

Cryptographic – No!
Derandomization – Yes! [NW, ...]

9 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Randomized algorithm M(x, r) computing language L
Deterministic simulation D(x) = M(x, E(x)) = M(G(x))

E pseudorandom even with seed revealed

G “seed-extending” PRG, G(x) = (x, E(x))

G PRG for tests checking M(x,r) = L(x) ⇒
PrX[M(G(X)) = L(X)] ≈ PrX, R[M(X,R) = L(X)] ≥ 1− ρ

Seed-extending PRG?

Cryptographic – No!

Derandomization – Yes! [NW, ...]

9 / 40

Derandomization Hierarchy Theorems Monotone Computations

A New Approach – Typically-Correct Derandomization

Randomized algorithm M(x, r) computing language L
Deterministic simulation D(x) = M(x, E(x)) = M(G(x))

E pseudorandom even with seed revealed

G “seed-extending” PRG, G(x) = (x, E(x))

G PRG for tests checking M(x,r) = L(x) ⇒
PrX[M(G(X)) = L(X)] ≈ PrX, R[M(X,R) = L(X)] ≥ 1− ρ

Seed-extending PRG?

Cryptographic – No!
Derandomization – Yes! [NW, ...]

9 / 40

Derandomization Hierarchy Theorems Monotone Computations

Standard Use of PRG’s vs. Typ-Correct

Standard Derandomization Typ-Correct Derandomization
[Nisan & Wigderson, ...]
• Always correct • Small # mistakes
• Run PRG many times • Run PRG only once
• Need exponential stretch • Need only poly stretch

10 / 40

Derandomization Hierarchy Theorems Monotone Computations

Standard Use of PRG’s vs. Typ-Correct

Standard Derandomization Typ-Correct Derandomization
[Nisan & Wigderson, ...]

• Always correct • Small # mistakes
• Run PRG many times • Run PRG only once
• Need exponential stretch • Need only poly stretch

10 / 40

Derandomization Hierarchy Theorems Monotone Computations

Standard Use of PRG’s vs. Typ-Correct

Standard Derandomization Typ-Correct Derandomization
[Nisan & Wigderson, ...]
• Always correct • Small # mistakes

• Run PRG many times • Run PRG only once
• Need exponential stretch • Need only poly stretch

10 / 40

Derandomization Hierarchy Theorems Monotone Computations

Standard Use of PRG’s vs. Typ-Correct

Standard Derandomization Typ-Correct Derandomization
[Nisan & Wigderson, ...]
• Always correct • Small # mistakes
• Run PRG many times • Run PRG only once

• Need exponential stretch • Need only poly stretch

10 / 40

Derandomization Hierarchy Theorems Monotone Computations

Standard Use of PRG’s vs. Typ-Correct

Standard Derandomization Typ-Correct Derandomization
[Nisan & Wigderson, ...]
• Always correct • Small # mistakes
• Run PRG many times • Run PRG only once
• Need exponential stretch • Need only poly stretch

10 / 40

Derandomization Hierarchy Theorems Monotone Computations

Our Results

Randomized algorithm M(x, r) computing language L
Deterministic simulation: D(x) = M(x, NWH(x))

NWH based on hardness of H

New conditional typically-correct derandomizations

New unconditional typically-correct derandomizations

11 / 40

Derandomization Hierarchy Theorems Monotone Computations

Our Results

Randomized algorithm M(x, r) computing language L

Deterministic simulation: D(x) = M(x, NWH(x))
NWH based on hardness of H

New conditional typically-correct derandomizations

New unconditional typically-correct derandomizations

11 / 40

Derandomization Hierarchy Theorems Monotone Computations

Our Results

Randomized algorithm M(x, r) computing language L
Deterministic simulation: D(x) = M(x, NWH(x))

NWH based on hardness of H

New conditional typically-correct derandomizations

New unconditional typically-correct derandomizations

11 / 40

Derandomization Hierarchy Theorems Monotone Computations

Our Results

Randomized algorithm M(x, r) computing language L
Deterministic simulation: D(x) = M(x, NWH(x))

NWH based on hardness of H

New conditional typically-correct derandomizations

New unconditional typically-correct derandomizations

11 / 40

Derandomization Hierarchy Theorems Monotone Computations

Our Results

Randomized algorithm M(x, r) computing language L
Deterministic simulation: D(x) = M(x, NWH(x))

NWH based on hardness of H

New conditional typically-correct derandomizations

New unconditional typically-correct derandomizations

11 / 40

Derandomization Hierarchy Theorems Monotone Computations

Deterministic Poly-time Simulations of BPP

H δ-hard for SIZE(s)

Circuit C, size ≤ s ⇒ PrX∈{0,1}n [C(X)6=H(X)]≥ δ(n)

Hardness Assumption → # mistakes
[NW, IW] E * SIZE(2εn) 0

[GW] P is 1/3-hard for SIZESAT(nd) 2n
ε

[Sha] P is 1
2 − 2−n

Ω(1)
-hard for SIZE(nd) 2n

2n
Ω(1)

ours P is 1/poly-hard for SIZE(nd) 2n

poly

Similar conditional results for AM, BPL, ...

12 / 40

Derandomization Hierarchy Theorems Monotone Computations

Deterministic Poly-time Simulations of BPP

H δ-hard for SIZE(s)

Circuit C, size ≤ s ⇒ PrX∈{0,1}n [C(X)6=H(X)]≥ δ(n)

Hardness Assumption → # mistakes
[NW, IW] E * SIZE(2εn) 0

[GW] P is 1/3-hard for SIZESAT(nd) 2n
ε

[Sha] P is 1
2 − 2−n

Ω(1)
-hard for SIZE(nd) 2n

2n
Ω(1)

ours P is 1/poly-hard for SIZE(nd) 2n

poly

Similar conditional results for AM, BPL, ...

12 / 40

Derandomization Hierarchy Theorems Monotone Computations

Deterministic Poly-time Simulations of BPP

H δ-hard for SIZE(s)

Circuit C, size ≤ s

⇒ PrX∈{0,1}n [C(X)6=H(X)]≥ δ(n)

Hardness Assumption → # mistakes
[NW, IW] E * SIZE(2εn) 0

[GW] P is 1/3-hard for SIZESAT(nd) 2n
ε

[Sha] P is 1
2 − 2−n

Ω(1)
-hard for SIZE(nd) 2n

2n
Ω(1)

ours P is 1/poly-hard for SIZE(nd) 2n

poly

Similar conditional results for AM, BPL, ...

12 / 40

Derandomization Hierarchy Theorems Monotone Computations

Deterministic Poly-time Simulations of BPP

H δ-hard for SIZE(s)

Circuit C, size ≤ s ⇒ PrX∈{0,1}n [C(X)6=H(X)]≥ δ(n)

Hardness Assumption → # mistakes
[NW, IW] E * SIZE(2εn) 0

[GW] P is 1/3-hard for SIZESAT(nd) 2n
ε

[Sha] P is 1
2 − 2−n

Ω(1)
-hard for SIZE(nd) 2n

2n
Ω(1)

ours P is 1/poly-hard for SIZE(nd) 2n

poly

Similar conditional results for AM, BPL, ...

12 / 40

Derandomization Hierarchy Theorems Monotone Computations

Deterministic Poly-time Simulations of BPP

H δ-hard for SIZE(s)

Circuit C, size ≤ s ⇒ PrX∈{0,1}n [C(X)6=H(X)]≥ δ(n)

Hardness Assumption → # mistakes
[NW, IW] E * SIZE(2εn) 0

[GW] P is 1/3-hard for SIZESAT(nd) 2n
ε

[Sha] P is 1
2 − 2−n

Ω(1)
-hard for SIZE(nd) 2n

2n
Ω(1)

ours P is 1/poly-hard for SIZE(nd) 2n

poly

Similar conditional results for AM, BPL, ...

12 / 40

Derandomization Hierarchy Theorems Monotone Computations

Deterministic Poly-time Simulations of BPP

H δ-hard for SIZE(s)

Circuit C, size ≤ s ⇒ PrX∈{0,1}n [C(X)6=H(X)]≥ δ(n)

Hardness Assumption → # mistakes
[NW, IW] E * SIZE(2εn) 0

[GW] P is 1/3-hard for SIZESAT(nd) 2n
ε

[Sha] P is 1
2 − 2−n

Ω(1)
-hard for SIZE(nd) 2n

2n
Ω(1)

ours P is 1/poly-hard for SIZE(nd) 2n

poly

Similar conditional results for AM, BPL, ...

12 / 40

Derandomization Hierarchy Theorems Monotone Computations

New Unconditional Results

AC0 with few symmetric gates

M uses o(log2 n) sym gates, error ρ ≤ 1/3 ⇒
D in AC0[sym], D(x) = L(x) for all but ρ+ n−ω(1) fraction of x

Other Settings

Multi-party communication protocols

13 / 40

Derandomization Hierarchy Theorems Monotone Computations

New Unconditional Results

AC0 with few symmetric gates

M uses o(log2 n) sym gates, error ρ ≤ 1/3 ⇒
D in AC0[sym], D(x) = L(x) for all but ρ+ n−ω(1) fraction of x

Other Settings

Multi-party communication protocols

13 / 40

Derandomization Hierarchy Theorems Monotone Computations

New Unconditional Results

AC0 with few symmetric gates

M uses o(log2 n) sym gates, error ρ ≤ 1/3

⇒
D in AC0[sym], D(x) = L(x) for all but ρ+ n−ω(1) fraction of x

Other Settings

Multi-party communication protocols

13 / 40

Derandomization Hierarchy Theorems Monotone Computations

New Unconditional Results

AC0 with few symmetric gates

M uses o(log2 n) sym gates, error ρ ≤ 1/3 ⇒
D in AC0[sym], D(x) = L(x) for all but ρ+ n−ω(1) fraction of x

Other Settings

Multi-party communication protocols

13 / 40

Derandomization Hierarchy Theorems Monotone Computations

New Unconditional Results

AC0 with few symmetric gates

M uses o(log2 n) sym gates, error ρ ≤ 1/3 ⇒
D in AC0[sym], D(x) = L(x) for all but ρ+ n−ω(1) fraction of x

Other Settings

Multi-party communication protocols

13 / 40

Derandomization Hierarchy Theorems Monotone Computations

Circuit Lower Bounds and Derandomization

[Kabanets-Impagliazzo]

BPP ⊆ NSUBEXP ⇒
NEXP * P/poly or PERM /∈ Arith-P/poly

Does typically-correct derandomization imply circuit
lower bounds?

Yes for small error:
NSUBEXP computes BPP with ≤ 2n

ε
errors ⇒

NEXP * P/poly or PERM /∈ Arith-P/poly

Simpler proof for everywhere-correct setting

14 / 40

Derandomization Hierarchy Theorems Monotone Computations

Circuit Lower Bounds and Derandomization

[Kabanets-Impagliazzo]

BPP ⊆ NSUBEXP ⇒
NEXP * P/poly or PERM /∈ Arith-P/poly

Does typically-correct derandomization imply circuit
lower bounds?

Yes for small error:
NSUBEXP computes BPP with ≤ 2n

ε
errors ⇒

NEXP * P/poly or PERM /∈ Arith-P/poly

Simpler proof for everywhere-correct setting

14 / 40

Derandomization Hierarchy Theorems Monotone Computations

Circuit Lower Bounds and Derandomization

[Kabanets-Impagliazzo]

BPP ⊆ NSUBEXP ⇒

NEXP * P/poly or PERM /∈ Arith-P/poly

Does typically-correct derandomization imply circuit
lower bounds?

Yes for small error:
NSUBEXP computes BPP with ≤ 2n

ε
errors ⇒

NEXP * P/poly or PERM /∈ Arith-P/poly

Simpler proof for everywhere-correct setting

14 / 40

Derandomization Hierarchy Theorems Monotone Computations

Circuit Lower Bounds and Derandomization

[Kabanets-Impagliazzo]

BPP ⊆ NSUBEXP ⇒
NEXP * P/poly or PERM /∈ Arith-P/poly

Does typically-correct derandomization imply circuit
lower bounds?

Yes for small error:
NSUBEXP computes BPP with ≤ 2n

ε
errors ⇒

NEXP * P/poly or PERM /∈ Arith-P/poly

Simpler proof for everywhere-correct setting

14 / 40

Derandomization Hierarchy Theorems Monotone Computations

Circuit Lower Bounds and Derandomization

[Kabanets-Impagliazzo]

BPP ⊆ NSUBEXP ⇒
NEXP * P/poly or PERM /∈ Arith-P/poly

Does typically-correct derandomization imply circuit
lower bounds?

Yes for small error:
NSUBEXP computes BPP with ≤ 2n

ε
errors ⇒

NEXP * P/poly or PERM /∈ Arith-P/poly

Simpler proof for everywhere-correct setting

14 / 40

Derandomization Hierarchy Theorems Monotone Computations

Circuit Lower Bounds and Derandomization

[Kabanets-Impagliazzo]

BPP ⊆ NSUBEXP ⇒
NEXP * P/poly or PERM /∈ Arith-P/poly

Does typically-correct derandomization imply circuit
lower bounds?

Yes for small error:

NSUBEXP computes BPP with ≤ 2n
ε

errors ⇒
NEXP * P/poly or PERM /∈ Arith-P/poly

Simpler proof for everywhere-correct setting

14 / 40

Derandomization Hierarchy Theorems Monotone Computations

Circuit Lower Bounds and Derandomization

[Kabanets-Impagliazzo]

BPP ⊆ NSUBEXP ⇒
NEXP * P/poly or PERM /∈ Arith-P/poly

Does typically-correct derandomization imply circuit
lower bounds?

Yes for small error:
NSUBEXP computes BPP with ≤ 2n

ε
errors

⇒
NEXP * P/poly or PERM /∈ Arith-P/poly

Simpler proof for everywhere-correct setting

14 / 40

Derandomization Hierarchy Theorems Monotone Computations

Circuit Lower Bounds and Derandomization

[Kabanets-Impagliazzo]

BPP ⊆ NSUBEXP ⇒
NEXP * P/poly or PERM /∈ Arith-P/poly

Does typically-correct derandomization imply circuit
lower bounds?

Yes for small error:
NSUBEXP computes BPP with ≤ 2n

ε
errors ⇒

NEXP * P/poly or PERM /∈ Arith-P/poly

Simpler proof for everywhere-correct setting

14 / 40

Derandomization Hierarchy Theorems Monotone Computations

Circuit Lower Bounds and Derandomization

[Kabanets-Impagliazzo]

BPP ⊆ NSUBEXP ⇒
NEXP * P/poly or PERM /∈ Arith-P/poly

Does typically-correct derandomization imply circuit
lower bounds?

Yes for small error:
NSUBEXP computes BPP with ≤ 2n

ε
errors ⇒

NEXP * P/poly or PERM /∈ Arith-P/poly

Simpler proof for everywhere-correct setting

14 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(A∗

i,j) for any i ∈ [n]
Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?

15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(A∗

i,j) for any i ∈ [n]
Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?

15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(A∗

i,j) for any i ∈ [n]
Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?

15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(A∗

i,j) for any i ∈ [n]
Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?

15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C

Perm(A) =
∑n

j=1 Ai,j · Perm(A∗
i,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?

15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(A∗

i,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?

15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(A∗

i,j) for any i ∈ [n]
Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?

15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(A∗

i,j) for any i ∈ [n]
Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?

15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(A∗

i,j) for any i ∈ [n]
Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk)

⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?

15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(A∗

i,j) for any i ∈ [n]
Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?

15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomization Implies Circuit Lower Bounds

BPP ⊆ NSUBEXP and Perm ∈ Arith-P/poly
⇒ NEXP * P/poly

+
×
+

+
-
×

×

x1
x2
x3
1

Polynomial
Identity
Testing
(PIT)

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

PPerm ⊆ NSUBEXP (same as [KI])

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(A∗

i,j) for any i ∈ [n]
Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP * SIZE(nk) ⇒ NEXP * SIZE(poly)

What if assumed PIT alg is only typically-correct?
15 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong
Guess and verify set of false positives
Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit
Guess a duplicate, not all duplicates can be false negatives

16 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors

⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong
Guess and verify set of false positives
Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit
Guess a duplicate, not all duplicates can be false negatives

16 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong
Guess and verify set of false positives
Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit
Guess a duplicate, not all duplicates can be false negatives

16 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong
Guess and verify set of false positives
Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit
Guess a duplicate, not all duplicates can be false negatives

16 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong

Guess and verify set of false positives
Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit
Guess a duplicate, not all duplicates can be false negatives

16 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong
Guess and verify set of false positives

Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit
Guess a duplicate, not all duplicates can be false negatives

16 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong
Guess and verify set of false positives
Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit
Guess a duplicate, not all duplicates can be false negatives

16 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong
Guess and verify set of false positives
Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit
Guess a duplicate, not all duplicates can be false negatives

16 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong
Guess and verify set of false positives
Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit

Guess a duplicate, not all duplicates can be false negatives

16 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

Avoid false positives

Advice: # mistakes s.t. M claims ≡ 0 but wrong
Guess and verify set of false positives
Accept if M claims ≡ 0 and not among ↑ mistakes

Avoid false negatives

Pad PIT language so > 2nε duplicate copies of each circuit
Guess a duplicate, not all duplicates can be false negatives

16 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP computes BPP with ≤ 2n
ε

errors
and Perm ∈ Arith-P/poly ⇒ NEXP * P/poly

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

PPerm ⊆ NSUBEXP with nε
′

bits of advice
Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(Ai,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP with nε
′

bits of advice * SIZE(nk)
⇒ NEXP * SIZE(poly)

17 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP computes BPP with ≤ 2n
ε

errors
and Perm ∈ Arith-P/poly

⇒ NEXP * P/poly

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

PPerm ⊆ NSUBEXP with nε
′

bits of advice
Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(Ai,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP with nε
′

bits of advice * SIZE(nk)
⇒ NEXP * SIZE(poly)

17 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP computes BPP with ≤ 2n
ε

errors
and Perm ∈ Arith-P/poly ⇒ NEXP * P/poly

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

PPerm ⊆ NSUBEXP with nε
′

bits of advice
Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(Ai,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP with nε
′

bits of advice * SIZE(nk)
⇒ NEXP * SIZE(poly)

17 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP computes BPP with ≤ 2n
ε

errors
and Perm ∈ Arith-P/poly ⇒ NEXP * P/poly

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

PPerm ⊆ NSUBEXP with nε
′

bits of advice
Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(Ai,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP with nε
′

bits of advice * SIZE(nk)
⇒ NEXP * SIZE(poly)

17 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP computes BPP with ≤ 2n
ε

errors
and Perm ∈ Arith-P/poly ⇒ NEXP * P/poly

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

PPerm ⊆ NSUBEXP with nε
′

bits of advice

Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(Ai,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP with nε
′

bits of advice * SIZE(nk)
⇒ NEXP * SIZE(poly)

17 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP computes BPP with ≤ 2n
ε

errors
and Perm ∈ Arith-P/poly ⇒ NEXP * P/poly

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

PPerm ⊆ NSUBEXP with nε
′

bits of advice
Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(Ai,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP with nε
′

bits of advice * SIZE(nk)
⇒ NEXP * SIZE(poly)

17 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP computes BPP with ≤ 2n
ε

errors
and Perm ∈ Arith-P/poly ⇒ NEXP * P/poly

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

PPerm ⊆ NSUBEXP with nε
′

bits of advice
Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(Ai,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP with nε
′

bits of advice * SIZE(nk)
⇒ NEXP * SIZE(poly)

17 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP computes BPP with ≤ 2n
ε

errors
and Perm ∈ Arith-P/poly ⇒ NEXP * P/poly

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

PPerm ⊆ NSUBEXP with nε
′

bits of advice
Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(Ai,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP with nε
′

bits of advice * SIZE(nk)

⇒ NEXP * SIZE(poly)

17 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derand Implies Circuit Lower Bounds

NSUBEXP computes BPP with ≤ 2n
ε

errors
and Perm ∈ Arith-P/poly ⇒ NEXP * P/poly

NSUBEXP algorithm M computes PIT with ≤ 2n
ε

errors
⇒ PIT ⊆ NSUBEXP with nε advice bits

PPerm ⊆ NSUBEXP with nε
′

bits of advice
Guess arithmetic circuit C
Perm(A) =

∑n
j=1 Ai,j · Perm(Ai,j) for any i ∈ [n]

Use C in place of Perm in ↑, check using PIT algorithm

PPerm * SIZE(nk) [Toda, Kannan]

NSUBEXP with nε
′

bits of advice * SIZE(nk)
⇒ NEXP * SIZE(poly)

17 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness?

P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates:

implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds

Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates:

relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds

Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Typically-Correct Derandomization Recap

How Powerful is Randomness? P vs. BPP, L vs. BPL

Conjecture: P=BPP, L=BPL

“Typically-correct” Derandomization

For all of BPP?

Small error rates: implies circuit lower bounds
Larger error rates: relativizing techniques and arithmetization
alone not enough

Applications?

Time-space lower bounds
Hierarchy theorems for randomized algorithms

18 / 40

Derandomization Hierarchy Theorems Monotone Computations

Outline

How Powerful is Randomness?

“Typically-correct” Derandomization

Hierarchy Theorems for Randomized Algorithms

Derandomizing Monotone Computations

19 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

20 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

My work: hierarchy theorems for randomized algorithms

If PRGs prove BPP=P, BPL=L then hierarchies also

Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing

(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

My work: hierarchy theorems for randomized algorithms

If PRGs prove BPP=P, BPL=L then hierarchies also

Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

My work: hierarchy theorems for randomized algorithms

If PRGs prove BPP=P, BPL=L then hierarchies also

Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

My work: hierarchy theorems for randomized algorithms

If PRGs prove BPP=P, BPL=L then hierarchies also

Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

n time

My work: hierarchy theorems for randomized algorithms
If PRGs prove BPP=P, BPL=L then hierarchies also
Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

n time

n2 time

My work: hierarchy theorems for randomized algorithms
If PRGs prove BPP=P, BPL=L then hierarchies also
Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

n time

n2 time
n3 time

My work: hierarchy theorems for randomized algorithms
If PRGs prove BPP=P, BPL=L then hierarchies also
Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

n time

n2 time

Poly Time
n3 time

My work: hierarchy theorems for randomized algorithms
If PRGs prove BPP=P, BPL=L then hierarchies also
Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

n time
Poly time =

My work: hierarchy theorems for randomized algorithms
If PRGs prove BPP=P, BPL=L then hierarchies also
Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

log n space

My work: hierarchy theorems for randomized algorithms
If PRGs prove BPP=P, BPL=L then hierarchies also
Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

log n space

log n · log log n

My work: hierarchy theorems for randomized algorithms
If PRGs prove BPP=P, BPL=L then hierarchies also
Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

log n space

log n · log log n
log2 n space

My work: hierarchy theorems for randomized algorithms
If PRGs prove BPP=P, BPL=L then hierarchies also
Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

My work: hierarchy theorems for randomized algorithms

If PRGs prove BPP=P, BPL=L then hierarchies also

Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

My work: hierarchy theorems for randomized algorithms

If PRGs prove BPP=P, BPL=L then hierarchies also

Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

My work: hierarchy theorems for randomized algorithms

If PRGs prove BPP=P, BPL=L

then hierarchies also

Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

My work: hierarchy theorems for randomized algorithms

If PRGs prove BPP=P, BPL=L then hierarchies also

Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems

Fix a model of computing
(deterministic, randomized, nondeterministic)

Can we achieve more given more resources?

My work: hierarchy theorems for randomized algorithms

If PRGs prove BPP=P, BPL=L then hierarchies also

Hierarchies without need for derandomization?

21 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

22 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

M2 M3 ... NM1
All Algorithms

22 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

M2 M3 ... N

x1
x2
x3

...

M1
All Algorithms

22 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

M2 M3 ... N
M1(x1)

M2(x2)

...
M3(x3)

x1
x2
x3

...

M1
All Algorithms

22 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

M2 M3 ... N
M1(x1) ¬ M1(x1)

M2(x2)

...
M3(x3)

x1
x2
x3

...

M1
All Algorithms

22 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

M2 M3 ... N
M1(x1) ¬ M1(x1)

M2(x2)

...
M3(x3)

x1
x2
x3

...

M1
All Algorithms

22 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

M2 M3 ... N
M1(x1) ¬ M1(x1)

M2(x2)

...

¬ M2(x2)
M3(x3)

x1
x2
x3

...

M1
All Algorithms

22 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

M2 M3 ... N
M1(x1) ¬ M1(x1)

M2(x2)

...

¬ M2(x2)
M3(x3)

x1
x2
x3

...

M1
All Algorithms

22 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

M2 M3 ... N
M1(x1) ¬ M1(x1)

M2(x2)

...

¬ M2(x2)
M3(x3) ¬ M3(x3)

...

x1
x2
x3

...

M1
All Algorithms

22 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

For any s, s’=ω(s), SPACE(s’) * SPACE(s)

23 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

For any s, s’=ω(s), SPACE(s’) * SPACE(s)

log n space

log n · log log n
log2 n space

23 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Deterministic Algorithms

For any s, s’=ω(s), SPACE(s’) * SPACE(s)

n time

n2 time

Poly Time
n3 time

23 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Bounded-Error Rand Algs?

M2 M3 ... N
M1(x1) ¬ M1(x1)

M2(x2)

...

¬ M2(x2)
M3(x3) ¬ M3(x3)

...

x1
x2
x3

...

M1
All Algorithms

What if Pr[M1(x1) = “yes”] ≈ .5?⇒ N not bounded error

24 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Bounded-Error Rand Algs?

M2 M3 ... N
M1(x1) ¬ M1(x1)

M2(x2)

...

¬ M2(x2)
M3(x3) ¬ M3(x3)

...

x1
x2
x3

...

M1
All Algorithms

What if Pr[M1(x1) = “yes”] ≈ .5?⇒ N not bounded error

24 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Bounded-Error Rand Algs?

M2 M3 ... N
M1(x1) ¬ M1(x1)

M2(x2)

...

¬ M2(x2)
M3(x3) ¬ M3(x3)

...

x1
x2
x3

...

M1
All Algorithms

What if Pr[M1(x1) = “yes”] ≈ .5?

⇒ N not bounded error

24 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy Theorems for Bounded-Error Rand Algs?

M2 M3 ... N
M1(x1) ¬ M1(x1)

M2(x2)

...

¬ M2(x2)
M3(x3) ¬ M3(x3)

...

x1
x2
x3

...

M1
All Algorithms

What if Pr[M1(x1) = “yes”] ≈ .5?⇒ N not bounded error

24 / 40

Derandomization Hierarchy Theorems Monotone Computations

Best-known Hierarchies Theorems for Randomized Algs

“Safe” complementation

N bounded error, regardless behavior of M

If M bounded error, N(x) 6= M(x)

[Savitch, ...] Unbounded-error Randomized SPACE(s)
⊆ Deterministic SPACE(s2)

⇒ Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s2)

Can show: Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s1+δ), any δ > 0

Best possible: SPACE(s’) * SPACE(s) for any s’=ω(s)

25 / 40

Derandomization Hierarchy Theorems Monotone Computations

Best-known Hierarchies Theorems for Randomized Algs

“Safe” complementation

N bounded error, regardless behavior of M

If M bounded error, N(x) 6= M(x)

[Savitch, ...] Unbounded-error Randomized SPACE(s)
⊆ Deterministic SPACE(s2)

⇒ Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s2)

Can show: Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s1+δ), any δ > 0

Best possible: SPACE(s’) * SPACE(s) for any s’=ω(s)

25 / 40

Derandomization Hierarchy Theorems Monotone Computations

Best-known Hierarchies Theorems for Randomized Algs

“Safe” complementation

N bounded error, regardless behavior of M

If M bounded error, N(x) 6= M(x)

[Savitch, ...] Unbounded-error Randomized SPACE(s)
⊆ Deterministic SPACE(s2)

⇒ Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s2)

Can show: Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s1+δ), any δ > 0

Best possible: SPACE(s’) * SPACE(s) for any s’=ω(s)

25 / 40

Derandomization Hierarchy Theorems Monotone Computations

Best-known Hierarchies Theorems for Randomized Algs

“Safe” complementation

N bounded error, regardless behavior of M

If M bounded error, N(x) 6= M(x)

[Savitch, ...] Unbounded-error Randomized SPACE(s)
⊆ Deterministic SPACE(s2)

⇒ Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s2)

Can show: Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s1+δ), any δ > 0

Best possible: SPACE(s’) * SPACE(s) for any s’=ω(s)

25 / 40

Derandomization Hierarchy Theorems Monotone Computations

Best-known Hierarchies Theorems for Randomized Algs

“Safe” complementation

N bounded error, regardless behavior of M

If M bounded error, N(x) 6= M(x)

[Savitch, ...] Unbounded-error Randomized SPACE(s)
⊆ Deterministic SPACE(s2)

⇒ Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s2)

Can show: Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s1+δ), any δ > 0

Best possible: SPACE(s’) * SPACE(s) for any s’=ω(s)

25 / 40

Derandomization Hierarchy Theorems Monotone Computations

Best-known Hierarchies Theorems for Randomized Algs

“Safe” complementation

N bounded error, regardless behavior of M

If M bounded error, N(x) 6= M(x)

[Savitch, ...] Unbounded-error Randomized SPACE(s)
⊆ Deterministic SPACE(s2)

⇒ Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s2)

Can show: Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s1+δ), any δ > 0

Best possible: SPACE(s’) * SPACE(s) for any s’=ω(s)

25 / 40

Derandomization Hierarchy Theorems Monotone Computations

Best-known Hierarchies Theorems for Randomized Algs

“Safe” complementation

N bounded error, regardless behavior of M

If M bounded error, N(x) 6= M(x)

[Savitch, ...] Unbounded-error Randomized SPACE(s)
⊆ Deterministic SPACE(s2)

⇒ Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s2)

Can show: Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s1+δ), any δ > 0

Best possible: SPACE(s’) * SPACE(s) for any s’=ω(s)

25 / 40

Derandomization Hierarchy Theorems Monotone Computations

Best-known Hierarchies Theorems for Randomized Algs

“Safe” complementation

N bounded error, regardless behavior of M

If M bounded error, N(x) 6= M(x)

[Savitch, ...] Unbounded-error Randomized SPACE(s)
⊆ Deterministic SPACE(s2)

⇒ Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s2)

Can show: Randomized SPACE(s’) * Randomized SPACE(s),
for s’=ω(s1+δ), any δ > 0

Best possible: SPACE(s’) * SPACE(s) for any s’=ω(s)

25 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

NM

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x
NM

¬ M(x)n
input
length

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x
NM

y

¬ M(x)

L(y)

n
input
length

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x
... ...

... ...

NM

y

¬ M(x)

L(y)

n
n+1

input
length

...
“Hard”Language

L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y

... ...

... ...

NM

y

¬ M(x)

L(y)

n
n+1

input
length

...

N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y 0` y

... ...

... ...

NM

y

¬ M(x)

L(y)

n
n+1

input
length

...

N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y
0`−1 y
0` y

... ...

... ...

NM

y

¬ M(x)

N(0`−1y) = M(0`y)

L(y)

n
n+1

input
length

...

N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y
0`−1 y 0`−1 y

0` y

... ...

... ...

NM

y

¬ M(x)

N(0`−1y) = M(0`y)

L(y)

n
n+1

input
length

...

N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y
0`−1 y 0`−1 y

0` y

y

... ...

... ...

NM

y

¬ M(x)

...

N(0`−1y) = M(0`y)

N(y) = L(y)
L(y)

n
n+1

input
length

...

N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y
0`−1 y 0`−1 y

0` y

y

... ...

... ...

NM

y

¬ M(x)

...

N(0`−1y) = M(0`y)

N(y) = L(y)
L(y)

n
n+1

input
length

...

N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y
0`−1 y 0`−1 y

0` y

y

... ...

... ...

NM

y

¬ M(x)

...

N(0`−1y) = M(0`y)

N(y) = L(y)
L(y)

n
n+1

input
length

...

What if Pr[M(0`y)=1]=12
N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y
0`−1 y 0`−1 y

0` y

y

... ...

... ...

NM

y

¬ M(x)

...

N(0`−1y) = M(0`y)

N(y) = L(y)
L(y)

n
n+1

input
length

...

advice

What if Pr[M(0`y)=1]=12
N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y
0`−1 y 0`−1 y

0` y

y

... ...

... ...

NM

y

¬ M(x)

...

N(0`−1y) = M(0`y)

N(y) = L(y)
L(y)

n
n+1

input
length

...

advice

What if Pr[M(0`y)=1]=12
N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y
0`−1 y 0`−1 y

0` y

y

... ...

... ...

NM

y

¬ M(x)

...

N(0`−1y) = M(0`y)

N(y) = L(y)
L(y)

n
n+1

input
length

...

adviceadvice

What if Pr[M(0`y)=1]=12
N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

x x

0` y
0`−1 y 0`−1 y

0` y

y

... ...

... ...

NM

y

¬ M(x)

...

N(0`−1y) = M(0`y)

N(y) = L(y)
L(y)

n
n+1

input
length

...

adviceadvice

Recovery Procedure

What if Pr[M(0`y)=1]=12
N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Tight Hierarchies with One Bit of Advice, Log Space

0` y
0`−1 y 0`−1 y

0` y

y

... ...

... ...

NM

y
...

N(0`−1y) = M(0`y)

N(y) = L(y)
L(y)

n
n+1

input
length

...

adviceadvice
xa xa ¬ M(xa)/a

Recovery Procedure

What if Pr[M(0`y)=1]=12
N(0`y) = L(y)

“Hard”Language
L

26 / 40

Derandomization Hierarchy Theorems Monotone Computations

Recovery Procedure for L

Input: y, list of randomized machines

Output: L(y), using small space, with bounded error

Pre-condition: at least one machine in list computes L on
instances of length |y |, using small space, with bounded error

27 / 40

Derandomization Hierarchy Theorems Monotone Computations

Recovery Procedure for L

Input: y, list of randomized machines

Output: L(y), using small space, with bounded error

Pre-condition: at least one machine in list computes L on
instances of length |y |, using small space, with bounded error

27 / 40

Derandomization Hierarchy Theorems Monotone Computations

Recovery Procedure for L

Input: y, list of randomized machines

Output: L(y), using small space, with bounded error

Pre-condition: at least one machine in list computes L on
instances of length |y |, using small space, with bounded error

27 / 40

Derandomization Hierarchy Theorems Monotone Computations

Recovery Procedure for L

Input: y, list of randomized machines

Output: L(y), using small space, with bounded error

Pre-condition: at least one machine in list computes L on
instances of length |y |, using small space, with bounded error

27 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hard Language L – 〈D,x,t,j〉

L is “hard” – complete for P ⊇ BPL

Space-efficient Recovery Procedure for L

28 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hard Language L – 〈D,x,t,j〉

Computation Tableau of machine D on input x

L is “hard” – complete for P ⊇ BPL

Space-efficient Recovery Procedure for L

28 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hard Language L – 〈D,x,t,j〉

internal state work tape contents
Computation Tableau of machine D on input x

L is “hard” – complete for P ⊇ BPL

Space-efficient Recovery Procedure for L

28 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hard Language L – 〈D,x,t,j〉

internal state work tape contents
Computation Tableau of machine D on input x

L is “hard” – complete for P ⊇ BPL

Space-efficient Recovery Procedure for L

28 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hard Language L – 〈D,x,t,j〉

internal state work tape contents
time = 1
time = 2

......

Computation Tableau of machine D on input x

L is “hard” – complete for P ⊇ BPL

Space-efficient Recovery Procedure for L

28 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hard Language L – 〈D,x,t,j〉

internal state work tape contents
time = 1
time = 2

j......

Computation Tableau of machine D on input x

t

L is “hard” – complete for P ⊇ BPL

Space-efficient Recovery Procedure for L

28 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hard Language L – 〈D,x,t,j〉

internal state work tape contents
time = 1
time = 2

j......

Computation Tableau of machine D on input x

t

L is “hard” – complete for P ⊇ BPL

Space-efficient Recovery Procedure for L

28 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hard Language L – 〈D,x,t,j〉

internal state work tape contents
time = 1
time = 2

j......

Computation Tableau of machine D on input x

t

L is “hard” – complete for P ⊇ BPL

Space-efficient Recovery Procedure for L

28 / 40

Derandomization Hierarchy Theorems Monotone Computations

Recovery Procedure

Input: 〈D,x,t,j〉, {M1, M2, M3, ...}

For each Mi , 〈D,x,t’,j’〉

Bounded-error test

Local consistency test

29 / 40

Derandomization Hierarchy Theorems Monotone Computations

Recovery Procedure

internal state work tape contents
time = 1
time = 2

j......

Computation Tableau of machine D on input x

t

Input: 〈D,x,t,j〉, {M1, M2, M3, ...}

For each Mi , 〈D,x,t’,j’〉

Bounded-error test

Local consistency test

29 / 40

Derandomization Hierarchy Theorems Monotone Computations

Recovery Procedure

internal state work tape contents
time = 1
time = 2

j......

Computation Tableau of machine D on input x

t

Input: 〈D,x,t,j〉, {M1, M2, M3, ...}

For each Mi , 〈D,x,t’,j’〉

Bounded-error test

Local consistency test

29 / 40

Derandomization Hierarchy Theorems Monotone Computations

Recovery Procedure

internal state work tape contents
time = 1
time = 2

j......

Computation Tableau of machine D on input x

t

Input: 〈D,x,t,j〉, {M1, M2, M3, ...}

For each Mi , 〈D,x,t’,j’〉

Bounded-error test

Local consistency test

29 / 40

Derandomization Hierarchy Theorems Monotone Computations

Recovery Procedure

internal state work tape contents
time = 1
time = 2

j......

Computation Tableau of machine D on input x

t

Input: 〈D,x,t,j〉, {M1, M2, M3, ...}

For each Mi , 〈D,x,t’,j’〉

Bounded-error test

Local consistency test

29 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy with One Bit of Advice

For bounded-error randomized machines,
SPACE(s’)/1 * SPACE(log n)/log n, for any s’=ω(log n)

30 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy with One Bit of Advice

For bounded-error randomized machines,
SPACE(s’)/1 * SPACE(log n)/log n, for any s’=ω(log n)

30 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy with One Bit of Advice

For bounded-error randomized machines,
SPACE(s’)/1 * SPACE(s)/s, for any s ′ = ω(s),
typical s from log n to n

One- and Zero-sided error

Same high level approach

Hard Language “L”: NL-complete language similar to
st-connectivity

Zero-error recovery procedure for L based on inductive
counting [I88, S88]

31 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy with One Bit of Advice

For bounded-error randomized machines,
SPACE(s’)/1 * SPACE(s)/s, for any s ′ = ω(s),
typical s from log n to n

One- and Zero-sided error

Same high level approach

Hard Language “L”: NL-complete language similar to
st-connectivity

Zero-error recovery procedure for L based on inductive
counting [I88, S88]

31 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy with One Bit of Advice

For bounded-error randomized machines,
SPACE(s’)/1 * SPACE(s)/s, for any s ′ = ω(s),
typical s from log n to n

One- and Zero-sided error

Same high level approach

Hard Language “L”: NL-complete language similar to
st-connectivity

Zero-error recovery procedure for L based on inductive
counting [I88, S88]

31 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy with One Bit of Advice

For bounded-error randomized machines,
SPACE(s’)/1 * SPACE(s)/s, for any s ′ = ω(s),
typical s from log n to n

One- and Zero-sided error

Same high level approach

Hard Language “L”: NL-complete language similar to
st-connectivity

Zero-error recovery procedure for L based on inductive
counting [I88, S88]

31 / 40

Derandomization Hierarchy Theorems Monotone Computations

Hierarchy with One Bit of Advice

For bounded-error randomized machines,
SPACE(s’)/1 * SPACE(s)/s, for any s ′ = ω(s),
typical s from log n to n

One- and Zero-sided error

Same high level approach

Hard Language “L”: NL-complete language similar to
st-connectivity

Zero-error recovery procedure for L based on inductive
counting [I88, S88]

31 / 40

Derandomization Hierarchy Theorems Monotone Computations

Outline

How Powerful is Randomness?

“Typically-correct” Derandomization

Hierarchy Theorems for Randomized Algorithms

Derandomizing Monotone Computations

32 / 40

Derandomization Hierarchy Theorems Monotone Computations

Derandomizing Monotone Computations

33 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Graph Properties

Does G have a 3-clique/triangle?

34 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Circuits

[Razborov, ...] Monotone circuit size of clique is
super-poly

Average-case lower bounds, derandomization of randomized
monotone circuits?

[Kearns-Valiant, ...] Monotone functions not highly
average-case hard

Non-monotone functions?

35 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Circuits

[Razborov, ...] Monotone circuit size of clique is
super-poly

Average-case lower bounds, derandomization of randomized
monotone circuits?

[Kearns-Valiant, ...] Monotone functions not highly
average-case hard

Non-monotone functions?

35 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Circuits

[Razborov, ...] Monotone circuit size of clique is
super-poly

Average-case lower bounds, derandomization of randomized
monotone circuits?

[Kearns-Valiant, ...] Monotone functions not highly
average-case hard

Non-monotone functions?

35 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Circuits

[Razborov, ...] Monotone circuit size of clique is
super-poly

Average-case lower bounds, derandomization of randomized
monotone circuits?

[Kearns-Valiant, ...] Monotone functions not highly
average-case hard

Non-monotone functions?

35 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Circuits

[Razborov, ...] Monotone circuit size of clique is
super-poly

Average-case lower bounds, derandomization of randomized
monotone circuits?

[Kearns-Valiant, ...] Monotone functions not highly
average-case hard

Non-monotone functions?

35 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Circuits

[Razborov, ...] Monotone circuit size of clique is
super-poly

Average-case lower bounds, derandomization of randomized
monotone circuits?

[Kearns-Valiant, ...] Monotone functions not highly
average-case hard

Non-monotone functions?

35 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Circuits

[Razborov, ...] Monotone circuit size of clique is
super-poly

Average-case lower bounds, derandomization of randomized
monotone circuits?

[Kearns-Valiant, ...] Monotone functions not highly
average-case hard

Non-monotone functions?

35 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Circuits

[Razborov, ...] Monotone circuit size of clique is
super-poly

Average-case lower bounds, derandomization of randomized
monotone circuits?

[Kearns-Valiant, ...] Monotone functions not highly
average-case hard

Non-monotone functions?

35 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f, ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)
⇒ monotone ε′-distinguisher, ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P ⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f, ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)
⇒ monotone ε′-distinguisher, ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P ⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f, ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)
⇒ monotone ε′-distinguisher, ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P ⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f,

ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)
⇒ monotone ε′-distinguisher, ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P ⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f, ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)
⇒ monotone ε′-distinguisher, ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P ⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f, ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)
⇒ monotone ε′-distinguisher, ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P ⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f, ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)

⇒ monotone ε′-distinguisher, ε′ = max(ε
2(n+1) ,

c√
n log(1/ε)

)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P ⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f, ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)
⇒ monotone ε′-distinguisher, ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P ⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f, ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)
⇒ monotone ε′-distinguisher, ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P ⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f, ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)
⇒ monotone ε′-distinguisher, ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P

⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Results

Average-case hardness

C within (1
2 − ε) of f

⇒ monotone Cmon within (1
2 − ε

′) of f, ε′ = max(ε
n+1 ,

c√
n log(1/ε)

)

PRG’s

ε-distinguisher for distribution (e.g. output of PRG)
⇒ monotone ε′-distinguisher, ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
)

Derandomization

If all languages solvable by bounded-error randomized monotone
circuits are in P ⇒ BPP = P

36 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Slice Functions

i-th bit = 0

iff at least one other bit is 1

Slice function ⇒ monotone and general circuit size
nearly the same

37 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Slice Functions

000

010 001100

110 101 011

111

i-th bit = 0

iff at least one other bit is 1

Slice function ⇒ monotone and general circuit size
nearly the same

37 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Slice Functions

000

010 001100

110 101 011

111

i-th bit = 0

iff at least one other bit is 1

Slice function ⇒ monotone and general circuit size
nearly the same

37 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Slice Functions

000

010 001100

110 101 011

111

1

0

i-th bit = 0

iff at least one other bit is 1

Slice function ⇒ monotone and general circuit size
nearly the same

37 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Slice Functions

000

010 001100

110 101 011

111

1

0

i-th bit = 0

iff at least one other bit is 1

Slice function ⇒ monotone and general circuit size
nearly the same

37 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Slice Functions

000

010 001100

110 101 011

111

1

0

i-th bit = 0 iff at least one other bit is 1

Slice function ⇒ monotone and general circuit size
nearly the same

37 / 40

Derandomization Hierarchy Theorems Monotone Computations

Monotone Slice Functions

000

010 001100

110 101 011

111

1

0

i-th bit = 0 iff at least one other bit is 1

Slice function ⇒ monotone and general circuit size
nearly the same

37 / 40

Derandomization Hierarchy Theorems Monotone Computations

General versus Monotone Distinguishers

Distribution D, general circuit C such that
|PrX←D[C(X) = 1] - PrX←Un [C(X) = 1]| ≥ ε

C (ε
n+1)-distinguishes for x with |x|=k

If threshold is not ε′=(ε
2(n+1))-distinguisher, then Cmon is

38 / 40

Derandomization Hierarchy Theorems Monotone Computations

General versus Monotone Distinguishers

Distribution D, general circuit C such that
|PrX←D[C(X) = 1] - PrX←Un [C(X) = 1]| ≥ ε

C (ε
n+1)-distinguishes for x with |x|=k

If threshold is not ε′=(ε
2(n+1))-distinguisher, then Cmon is

38 / 40

Derandomization Hierarchy Theorems Monotone Computations

General versus Monotone Distinguishers

Distribution D, general circuit C such that
|PrX←D[C(X) = 1] - PrX←Un [C(X) = 1]| ≥ ε

000

010 001100

110 101 011

111

C (ε
n+1)-distinguishes for x with |x|=k

If threshold is not ε′=(ε
2(n+1))-distinguisher, then Cmon is

38 / 40

Derandomization Hierarchy Theorems Monotone Computations

General versus Monotone Distinguishers

Distribution D, general circuit C such that
|PrX←D[C(X) = 1] - PrX←Un [C(X) = 1]| ≥ ε

000

010 001100

110 101 011

111

C (ε
n+1)-distinguishes for x with |x|=k

If threshold is not ε′=(ε
2(n+1))-distinguisher, then Cmon is

38 / 40

Derandomization Hierarchy Theorems Monotone Computations

General versus Monotone Distinguishers

Distribution D, general circuit C such that
|PrX←D[C(X) = 1] - PrX←Un [C(X) = 1]| ≥ ε

000

010 001100

110 101 011

111
Cmon(x) =

C (ε
n+1)-distinguishes for x with |x|=k

If threshold is not ε′=(ε
2(n+1))-distinguisher, then Cmon is

38 / 40

Derandomization Hierarchy Theorems Monotone Computations

General versus Monotone Distinguishers

Distribution D, general circuit C such that
|PrX←D[C(X) = 1] - PrX←Un [C(X) = 1]| ≥ ε

000

010 001100

110 101 011

111
Cmon(x) =

1

0

C(x)

C (ε
n+1)-distinguishes for x with |x|=k

If threshold is not ε′=(ε
2(n+1))-distinguisher, then Cmon is

38 / 40

Derandomization Hierarchy Theorems Monotone Computations

General versus Monotone Distinguishers

Distribution D, general circuit C such that
|PrX←D[C(X) = 1] - PrX←Un [C(X) = 1]| ≥ ε

000

010 001100

110 101 011

111
Cmon(x) =

1

0

C(x)

C (ε
n+1)-distinguishes for x with |x|=k

If threshold is not ε′=(ε
2(n+1))-distinguisher, then Cmon is

38 / 40

Derandomization Hierarchy Theorems Monotone Computations

General versus Monotone Distinguishers

Distribution D, general circuit C such that
|PrX←D[C(X) = 1] - PrX←Un [C(X) = 1]| ≥ ε

000

010 001100

110 101 011

111
Cmon(x) =

1

0

C(x)

C (ε
n+1)-distinguishes for x with |x|=k

If threshold is not ε′=(ε
2(n+1))-distinguisher, then Cmon is

38 / 40

Derandomization Hierarchy Theorems Monotone Computations

Recap

How Powerful is Randomness?

“Typically-correct” Derandomization

Hierarchy Theorems for Randomized Algorithms

Derandomizing Monotone Computations

39 / 40

Derandomization Hierarchy Theorems Monotone Computations

The End, Thank You!

Slides will be available at:

http://www.kinnejeff.com/ (or E-mail me)

40 / 40

Derandomization Hierarchy Theorems Monotone Computations

The End, Thank You!

Slides will be available at:

http://www.kinnejeff.com/ (or E-mail me)

40 / 40

