Finding Very Large Prime Numbers

Jeff Kinne
Indiana State University

Midwest Theory Day, November 23, 2013

Notes

- My "normal" research - computational complexity

Notes

- My "normal" research - computational complexity
- Today - computational number theory

Notes

- My "normal" research - computational complexity
- Today - computational number theory
- Research in progress with Geoff Exoo (Indiana State)

Notes

- My "normal" research - computational complexity
- Today - computational number theory
- Research in progress with Geoff Exoo (Indiana State)
- Links to more information at the end

Notes

- My "normal" research - computational complexity
- Today - computational number theory
- Research in progress with Geoff Exoo (Indiana State)
- Links to more information at the end

Prime Records

Selected Largest Prime Records

Selected Largest Prime Records

year	digits	discoverer/notes
1588	6	Cataldi
1772	10	Euler
1867	13	Landry
1876	39	Lucas, 1st record w/ Lucas thm
1951	44	Ferrier, mechanical calc
1951	79	Miller \& Wheeler, EDSAC1 computer
1953	687	Robinson, SWAC
1963	2,917	Gillies, ILLIAC 2
1973	6,002	Tuckerman, IBM360/91
1983	39,751	Slowinski, Cray X-MP
1993	227,832	Slowinski et al., Cray-2
2003	$6,320,430$	GIMPS, Woltman
2013	$17,425,170$	GIMPS, Woltman

Current Largest Known Primes

Current Largest Known Primes

- Top ten are Mersenne primes, $2^{k}-1$

Current Largest Known Primes

- Top ten are Mersenne primes, $2^{k}-1$
- Great Internet Mersenne Prime Search (GIMPS)

Current Largest Known Primes

- Top ten are Mersenne primes, $2^{k}-1$
- Great Internet Mersenne Prime Search (GIMPS)
- ~ 5000 users, ~ 25000 computers

Current Largest Known Primes

- Top ten are Mersenne primes, $2^{k}-1$
- Great Internet Mersenne Prime Search (GIMPS)
- ~ 5000 users, ~ 25000 computers
- All records since 1996

Current Largest Known Primes

- Top ten are Mersenne primes, $2^{k}-1$
- Great Internet Mersenne Prime Search (GIMPS)
- ~ 5000 users, ~ 25000 computers
- All records since 1996
- All of the current largest known primes $\Leftrightarrow p \pm 1$ is factored

Current Largest Known Primes

- Top ten are Mersenne primes, $2^{k}-1$
- Great Internet Mersenne Prime Search (GIMPS)
- ~ 5000 users, ~ 25000 computers
- All records since 1996
- All of the current largest known primes $\Leftrightarrow p \pm 1$ is factored

Special Types

- Twin primes: p and $p+2$ both prime

Current Largest Known Primes

- Top ten are Mersenne primes, $2^{k}-1$
- Great Internet Mersenne Prime Search (GIMPS)
- ~ 5000 users, ~ 25000 computers
- All records since 1996
- All of the current largest known primes $\Leftrightarrow p \pm 1$ is factored

Special Types

- Twin primes: p and $p+2$ both prime
- Sophie-Germain: p and $2 p+1$

Current Largest Known Primes

- Top ten are Mersenne primes, $2^{k}-1$
- Great Internet Mersenne Prime Search (GIMPS)
- ~ 5000 users, ~ 25000 computers
- All records since 1996
- All of the current largest known primes $\Leftrightarrow p \pm 1$ is factored

Special Types

- Twin primes: p and $p+2$ both prime
- Sophie-Germain: p and $2 p+1$
- Factorial: $m!\pm 1$

Current Largest Known Primes

- Top ten are Mersenne primes, $2^{k}-1$
- Great Internet Mersenne Prime Search (GIMPS)
- ~ 5000 users, ~ 25000 computers
- All records since 1996
- All of the current largest known primes $\Leftrightarrow p \pm 1$ is factored

Special Types

- Twin primes: p and $p+2$ both prime
- Sophie-Germain: p and $2 p+1$
- Factorial: $m!\pm 1$
- ...

Our Results So Far

Our Results So Far

- Primes with $712 \mathrm{~K}, 470 \mathrm{~K}, 349 \mathrm{~K}$ digits

Our Results So Far

- Primes with $712 \mathrm{~K}, 470 \mathrm{~K}, 349 \mathrm{~K}$ digits
(190th, 865th, 3356th largest known)

Our Results So Far

- Primes with $712 \mathrm{~K}, 470 \mathrm{~K}, 349 \mathrm{~K}$ digits (190th, 865th, 3356th largest known)
- Sophie Germain prime with 31 K digits (16th largest known)

Our Results So Far

- Primes with $712 \mathrm{~K}, 470 \mathrm{~K}, 349 \mathrm{~K}$ digits (190th, 865th, 3356th largest known)
- Sophie Germain prime with 31K digits (16th largest known)
- Computing resources: 60 machines running continuously, another 50 on the weekends

Verifying Large Primes

Randomized Prime Tests

	Miller-Rabin	Fermat 1	1 1 some false positives
run time 2	b^{2}	$"$	${ }^{\text {ignoring poly-log factors }}$
$b=40$	2^{10}		
$b=1000$	2^{20}		
$b=1$ mil	2^{40}		

Fermat Test

Pick $1<a<N$ at random. N prime $\Rightarrow a^{N-1} \equiv 1 \bmod N$.

Randomized Prime Tests

Miller-Rabin Fermat ${ }^{1}$
run time ${ }^{2}$
$b=40$
$b=1000$
$b=1 \mathrm{mil}$
b^{2}
2^{10}
2^{20}
2^{40}

Deterministic Prime Tests

trial div MR w GRH AKS GNFS

run time 2	$2^{b / 2}$	b^{4}	b^{6}	$2^{O\left(b^{\frac{1}{3}} \log \frac{2}{3}(b)\right)}$
$b=40$	2^{20}	2^{20}	2^{30}	$2^{O(8)}$
$b=1000$	2^{500}	2^{40}	2^{60}	$2^{O(50)}$
$b=1000000$	$2^{500,000}$	2^{80}	2^{120}	$2^{O(575)}$

Deterministic Prime Tests

Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}\left(b^{2}\right)$ time

Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}\left(b^{2}\right)$ time

Theorem (Lucas)
$N>1$ is prime \Leftrightarrow

Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}\left(b^{2}\right)$ time

Theorem (Lucas)

$N>1$ is prime $\Leftrightarrow \exists a, 1<a<N$ s.t.

- $a^{N-1} \equiv 1 \bmod N$, and

Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}\left(b^{2}\right)$ time

```
Theorem (Lucas)
N>1 is prime \Leftrightarrow\existsa,1<a<N s.t.
- \(a^{N-1} \equiv 1 \bmod N\), and
- \(\forall\) prime \(q\) s.t. \(q \mid(N-1)\),
```


Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}\left(b^{2}\right)$ time

Theorem (Lucas)

$N>1$ is prime $\Leftrightarrow \exists a, 1<a<N$ s.t.

- $a^{N-1} \equiv 1 \bmod N$, and
- \forall prime q s.t. $q \mid(N-1), a^{(N-1) / q} \not \equiv 1 \bmod N$

Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}\left(b^{2}\right)$ time

Theorem (Lucas)

$N>1$ is prime $\Leftrightarrow \exists a, 1<a<N$ s.t.

- $a^{N-1} \equiv 1 \bmod N$, and
- \forall prime q s.t. $q \mid(N-1), a^{(N-1) / q} \not \equiv 1 \bmod N$

Example:

- $N=29$

Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}\left(b^{2}\right)$ time

Theorem (Lucas)

$N>1$ is prime $\Leftrightarrow \exists a, 1<a<N$ s.t.

- $a^{N-1} \equiv 1 \bmod N$, and
- \forall prime q s.t. $q \mid(N-1), a^{(N-1) / q} \not \equiv 1 \bmod N$

Example:

- $N=29$
- $2^{28} \equiv 1 \bmod 29$

Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}\left(b^{2}\right)$ time

Theorem (Lucas)

$N>1$ is prime $\Leftrightarrow \exists a, 1<a<N$ s.t.

- $a^{N-1} \equiv 1 \bmod N$, and
- \forall prime q s.t. $q \mid(N-1), a^{(N-1) / q} \not \equiv 1 \bmod N$

Example:

- $N=29$
- $2^{28} \equiv 1 \bmod 29$
- $2^{4} \equiv 16 \bmod 29$,

Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}\left(b^{2}\right)$ time

Theorem (Lucas)

$N>1$ is prime $\Leftrightarrow \exists a, 1<a<N$ s.t.

- $a^{N-1} \equiv 1 \bmod N$, and
- \forall prime q s.t. $q \mid(N-1), a^{(N-1) / q} \not \equiv 1 \bmod N$

Example:

- $N=29$
- $2^{28} \equiv 1 \bmod 29$
- $2^{4} \equiv 16 \bmod 29,2^{14} \equiv 28 \bmod 29$

Strategy for the Search

Basic Framework

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)
- E.g., set $N-1=k \cdot 2^{3,330,000}, k$ small

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)
- E.g., set $N-1=k \cdot 2^{3,330,000}, k$ small
- Test if N is prime

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)
- E.g., set $N-1=k \cdot 2^{3,330,000}, k$ small
- Test if N is prime
- Repeat

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)
- E.g., set $N-1=k \cdot 2^{3,330,000}, k$ small
- Test if N is prime
- Repeat

Prime Number Theorem

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)
- E.g., set $N-1=k \cdot 2^{3,330,000}, k$ small
- Test if N is prime
- Repeat

Prime Number Theorem

Number of primes at most $x=\Pi(x) \sim \frac{x}{\ln x}$

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)
- E.g., set $N-1=k \cdot 2^{3,330,000}, k$ small
- Test if N is prime
- Repeat

Prime Number Theorem

Number of primes at most $x=\Pi(x) \sim \frac{x}{\ln x}$

- $\operatorname{Pr}[d$ digit N is prime $] \approx \frac{1}{d \ln 10}$

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)
- E.g., set $N-1=k \cdot 2^{3,330,000}, k$ small
- Test if N is prime
- Repeat

Prime Number Theorem

Number of primes at most $x=\Pi(x) \sim \frac{x}{\ln x}$

- $\operatorname{Pr}[d$ digit N is prime $] \approx \frac{1}{d \ln 10}$ (heuristic, GRH)

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)
- E.g., set $N-1=k \cdot 2^{3,330,000}, k$ small
- Test if N is prime
- Repeat

Prime Number Theorem

Number of primes at most $x=\Pi(x) \sim \frac{x}{\ln x}$

- $\operatorname{Pr}[d$ digit N is prime $] \approx \frac{1}{d \ln 10}$ (heuristic, GRH)
- Test $d(\ln 10)(\ln 2)$ numbers $\Leftrightarrow 50 \%$ chance to find 1 prime

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)
- E.g., set $N-1=k \cdot 2^{3,330,000}, k$ small
- Test if N is prime
- Repeat

Prime Number Theorem

Number of primes at most $x=\Pi(x) \sim \frac{x}{\ln x}$

- $\operatorname{Pr}[d$ digit N is prime $] \approx \frac{1}{d \ln 10}$ (heuristic, GRH)
- Test $d(\ln 10)(\ln 2)$ numbers $\Leftrightarrow 50 \%$ chance to find 1 prime
- $d=13 \Leftrightarrow$ test about 21 numbers

Basic Framework

- Choose a number N (such that $N \pm 1$ is factored)
- E.g., set $N-1=k \cdot 2^{3,330,000}, k$ small
- Test if N is prime
- Repeat

Prime Number Theorem

Number of primes at most $x=\Pi(x) \sim \frac{x}{\ln x}$

- $\operatorname{Pr}[d$ digit N is prime $] \approx \frac{1}{d \ln 10}$ (heuristic, GRH)
- Test $d(\ln 10)(\ln 2)$ numbers $\Leftrightarrow 50 \%$ chance to find 1 prime
- $d=13 \Leftrightarrow$ test about 21 numbers
- $d=1,000,000 \Leftrightarrow$ test about 1.6 million

For about $d(\ln 10)(\ln 2)$ many $N .$.

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Mertens' formula)

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Mertens' formula)

$\prod_{p \leq T}\left(1-\frac{1}{p}\right)$

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Mertens' formula)
$\prod_{p \leq T}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln (T)}$

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Mertens' formula)

$\prod_{p \leq T}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln (T)}$

- T - threshold for trial division

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Mertens' formula)

$\prod_{p \leq T}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln (T)}$

- T - threshold for trial division
- $\gamma=0.57721, e^{-\gamma}=0.56145 \ldots$

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Mertens' formula)

$\prod_{p \leq T}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln (T)}$

- T - threshold for trial division
- $\gamma=0.57721, e^{-\gamma}=0.56145 \ldots$
- $T=10^{6} \Rightarrow \operatorname{Pr}$ pass trial division $\approx \frac{1}{25}$

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Mertens' formula)

$\prod_{p \leq T}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln (T)}$

- T - threshold for trial division
- $\gamma=0.57721, e^{-\gamma}=0.56145 \ldots$
- $T=10^{6} \Rightarrow \operatorname{Pr}$ pass trial division $\approx \frac{1}{25}$ (heuristic, GRH)

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Mertens' formula)

$\prod_{p \leq T}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln (T)}$

- T - threshold for trial division
- $\gamma=0.57721, e^{-\gamma}=0.56145 \ldots$
- $T=10^{6} \Rightarrow \operatorname{Pr}$ pass trial division $\approx \frac{1}{25}$ (heuristic, GRH)
- $T=10^{12} \Rightarrow \operatorname{Pr}$ pass trial division $\approx \frac{1}{50}$

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Pomerance)

Let $\mathcal{P}_{a}(x)=\#$ composites $N \leq x$ s.t. $a^{N-1} \equiv 1 \bmod N$.

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Pomerance)

Let $\mathcal{P}_{a}(x)=\#$ composites $N \leq x$ s.t. $a^{N-1} \equiv 1 \bmod N$.

$$
\mathcal{P}_{a}(x) / x \leq 1 / e^{\ln (x) \ln \ln \ln (x) /(2 \ln \ln (x))}
$$

For about $d(\ln 10)(\ln 2)$ many $N .$.

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Pomerance)

Let $\mathcal{P}_{a}(x)=\#$ composites $N \leq x$ s.t. $a^{N-1} \equiv 1 \bmod N$.

$$
\mathcal{P}_{a}(x) / x \leq 1 / e^{\ln (x) \ln \ln \ln (x) /(2 \ln \ln (x))}
$$

- N passes Fermat test $\Leftrightarrow \operatorname{Pr} N$ composite

$$
\leq \frac{d \ln (10)}{e^{d \ln (10) \ln \ln (d \ln (10)) /(2 \ln (d \ln (10)))}}
$$

For about $d(\ln 10)(\ln 2)$ many $N .$.

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Pomerance)

Let $\mathcal{P}_{a}(x)=\#$ composites $N \leq x$ s.t. $a^{N-1} \equiv 1 \bmod N$.

$$
\mathcal{P}_{a}(x) / x \leq 1 / e^{\ln (x) \ln \ln \ln (x) /(2 \ln \ln (x))}
$$

- N passes Fermat test $\Leftrightarrow \operatorname{Pr} N$ composite

$$
\leq \frac{d \ln (10)}{e^{d \ln (10) \ln \ln (d \ln (10)) /(2 \ln (d \ln (10)))}}
$$

- $d=1000 \Rightarrow \frac{1}{10^{129}}$,

For about $d(\ln 10)(\ln 2)$ many $N .$.

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Theorem (Pomerance)

Let $\mathcal{P}_{a}(x)=\#$ composites $N \leq x$ s.t. $a^{N-1} \equiv 1 \bmod N$.

$$
\mathcal{P}_{a}(x) / x \leq 1 / e^{\ln (x) \ln \ln \ln (x) /(2 \ln \ln (x))}
$$

- N passes Fermat test $\Leftrightarrow \operatorname{Pr} N$ composite

$$
\leq \frac{d \ln (10)}{e^{d \ln (10) \ln \ln (d \ln (10)) /(2 \ln (d \ln (10)))}}
$$

- $d=1000 \Rightarrow \frac{1}{10^{129}}, d=1,000,000 \Rightarrow \frac{1}{10^{90,000}}$

For about $d(\ln 10)(\ln 2)$ many $N .$.

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

For about $d(\ln 10)(\ln 2)$ many $N .$.

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Time to find d digit prime

$$
\widetilde{O}\left(d^{3}\right)
$$

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Time to find d digit prime

$$
\widetilde{O}\left(d^{3}\right)
$$

- $d=17 M$

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Time to find d digit prime

$$
\widetilde{O}\left(d^{3}\right)
$$

- $d=17 M \Rightarrow \widetilde{O}\left(4.9 \cdot 10^{21}\right)$

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Time to find d digit prime

$$
\widetilde{O}\left(d^{3}\right)
$$

- $d=17 M \Rightarrow \widetilde{O}\left(4.9 \cdot 10^{21}\right) \Rightarrow \approx 150,000 \mathrm{CPU}$ years (with 10^{9} operations/second/CPU)

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Time to find d digit prime

$$
\widetilde{O}\left(d^{3}\right)
$$

- $d=17 M \Rightarrow \widetilde{O}\left(4.9 \cdot 10^{21}\right) \Rightarrow \approx 150,000 \mathrm{CPU}$ years (with 10^{9} operations/second/CPU)
- Actually took 4 years, $\approx 25,000$ computers

For about $d(\ln 10)(\ln 2)$ many $N .$.

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Time to find d digit prime

$$
\widetilde{O}\left(d^{3}\right)
$$

- $d=17 M \Rightarrow \widetilde{O}\left(4.9 \cdot 10^{21}\right) \Rightarrow \approx 150,000 \mathrm{CPU}$ years (with 10^{9} operations/second/CPU)
- Actually took 4 years, $\approx 25,000$ computers
- $d=712 K$

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Time to find d digit prime

$$
\widetilde{O}\left(d^{3}\right)
$$

- $d=17 M \Rightarrow \widetilde{O}\left(4.9 \cdot 10^{21}\right) \Rightarrow \approx 150,000 \mathrm{CPU}$ years (with 10^{9} operations/second/CPU)
- Actually took 4 years, $\approx 25,000$ computers
- $d=712 K \Rightarrow \widetilde{O}\left(3.6 \cdot 10^{17}\right)$

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Time to find d digit prime

$$
\widetilde{O}\left(d^{3}\right)
$$

- $d=17 M \Rightarrow \widetilde{O}\left(4.9 \cdot 10^{21}\right) \Rightarrow \approx 150,000 \mathrm{CPU}$ years (with 10^{9} operations/second/CPU)
- Actually took 4 years, $\approx 25,000$ computers
- $d=712 \mathrm{~K} \Rightarrow \widetilde{O}\left(3.6 \cdot 10^{17}\right) \Rightarrow \approx 11 \mathrm{CPU}$ years

For about $d(\ln 10)(\ln 2)$ many $N \ldots$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test - $\sim \frac{1}{50 t h}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}\left(d^{2}\right)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}\left(d^{2}\right)$ time (heuristic, GRH)

Time to find d digit prime

$$
\widetilde{O}\left(d^{3}\right)
$$

- $d=17 M \Rightarrow \widetilde{O}\left(4.9 \cdot 10^{21}\right) \Rightarrow \approx 150,000 \mathrm{CPU}$ years (with 10^{9} operations/second/CPU)
- Actually took 4 years, $\approx 25,000$ computers
- $d=712 \mathrm{~K} \Rightarrow \widetilde{O}\left(3.6 \cdot 10^{17}\right) \Rightarrow \approx 11 \mathrm{CPU}$ years
- Actually took 1 month, ≈ 150 cores

Practical considerations

Practical considerations

- Heuristic is "good enough"

Practical considerations

- Heuristic is "good enough"
- Constant factors matter

Practical considerations

- Heuristic is "good enough"
- Constant factors matter
- Which math library matters: GMP, gwNum

Practical considerations

- Heuristic is "good enough"
- Constant factors matter
- Which math library matters: GMP, gwNum
- How many processes/computer: for 4 core CPU, 2 processes
(using double-wide floating point FFT for multiplication)

Practical considerations

- Heuristic is "good enough"
- Constant factors matter
- Which math library matters: GMP, gwNum
- How many processes/computer: for 4 core CPU, 2 processes (using double-wide floating point FFT for multiplication)
- Choose goal based on available CPUs

Thank You, The End

Thank You, The End

Links

- Prime Pages, by Chris Caldwell - THE source of information on prime records, and the official prime records database
- On the Distribution of Pseudoprimes by Pomerance - scarcity of Fermat pseudoprimes
- An Amazing Prime Heuristic - same heuristic arguments we presented today
- Software/libraries we use: GMP, OpenPFGW

