Finding Very Large Prime Numbers

Jeff Kinne

Indiana State University

Midwest Theory Day, November 23, 2013

Notes

• My "normal" research - computational complexity

2/18

- My "normal" research computational complexity
- Today computational number theory

2/18

イロン イロン イヨン イヨン 三油

- My "normal" research computational complexity
- Today computational number theory
- Research in progress with Geoff Exoo (Indiana State)

- My "normal" research computational complexity
- Today computational number theory
- Research in progress with Geoff Exoo (Indiana State)
- Links to more information at the end

- My "normal" research computational complexity
- Today computational number theory
- Research in progress with Geoff Exoo (Indiana State)
- Links to more information at the end

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

3/18

Prime Records

Selected Largest Prime Records

year	digits	discoverer/notes
1588	6	Cataldi
1772	10	Euler
1867	13	Landry
1876	39	Lucas, 1st record w/ Lucas thm
1951	44	Ferrier, mechanical calc
1951	79	Miller & Wheeler, EDSAC1 computer
1953	687	Robinson, SWAC
1963	2,917	Gillies, ILLIAC 2
1973	6,002	Tuckerman, IBM360/91
1983	39,751	Slowinski, Cray X-MP
1993	227,832	Slowinski et al., Cray-2
2003	6,320,430	GIMPS, Woltman
2013	17,425,170	GIMPS, Woltman

-2

<ロ> (四) (四) (日) (日) (日)

• Top ten are Mersenne primes, $2^k - 1$

5/18

イロン イロン イヨン イヨン 二年

- Top ten are Mersenne primes, $2^k 1$
- Great Internet Mersenne Prime Search (GIMPS)

- Top ten are Mersenne primes, $2^k 1$
- Great Internet Mersenne Prime Search (GIMPS)
 - $\bullet~\sim$ 5000 users, \sim 25000 computers

- Top ten are Mersenne primes, $2^k 1$
- Great Internet Mersenne Prime Search (GIMPS)
 - $\bullet~\sim$ 5000 users, \sim 25000 computers
 - All records since 1996

- Top ten are Mersenne primes, $2^k 1$
- Great Internet Mersenne Prime Search (GIMPS)
 - $\bullet~\sim$ 5000 users, \sim 25000 computers
 - All records since 1996

• All of the current largest known primes $\Leftrightarrow p \pm 1$ is factored

- Top ten are Mersenne primes, $2^k 1$
- Great Internet Mersenne Prime Search (GIMPS)
 - $\bullet~\sim$ 5000 users, \sim 25000 computers
 - All records since 1996
- All of the current largest known primes $\Leftrightarrow p \pm 1$ is factored

Special Types

• Twin primes: p and p + 2 both prime

- Top ten are Mersenne primes, $2^k 1$
- Great Internet Mersenne Prime Search (GIMPS)
 - $\bullet~\sim$ 5000 users, \sim 25000 computers
 - All records since 1996
- All of the current largest known primes $\Leftrightarrow p \pm 1$ is factored

Special Types

- Twin primes: p and p + 2 both prime
- Sophie-Germain: p and 2p + 1

- Top ten are Mersenne primes, $2^k 1$
- Great Internet Mersenne Prime Search (GIMPS)
 - \sim 5000 users, \sim 25000 computers
 - All records since 1996
- All of the current largest known primes $\Leftrightarrow p \pm 1$ is factored

Special Types

- Twin primes: p and p + 2 both prime
- Sophie-Germain: p and 2p + 1
- Factorial: $m! \pm 1$

- Top ten are Mersenne primes, $2^k 1$
- Great Internet Mersenne Prime Search (GIMPS)
 - \sim 5000 users, \sim 25000 computers
 - All records since 1996
- All of the current largest known primes $\Leftrightarrow p \pm 1$ is factored

Special Types

- Twin primes: p and p + 2 both prime
- Sophie-Germain: p and 2p + 1
- Factorial: $m! \pm 1$

• ...

<ロト < 部 > < 目 > < 目 > 三 の Q (C) 6/18

• Primes with 712K, 470K, 349K digits

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

 Primes with 712K, 470K, 349K digits (190th, 865th, 3356th largest known)

6/18

イロト 不同下 イヨト イヨト

Our Results So Far

- Primes with 712K, 470K, 349K digits (190th, 865th, 3356th largest known)
- Sophie Germain prime with 31K digits (16th largest known)

- Primes with 712K, 470K, 349K digits (190th, 865th, 3356th largest known)
- Sophie Germain prime with 31K digits (16th largest known)
- Computing resources: 60 machines running continuously, another 50 on the weekends

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

7/18

Verifying Large Primes

Randomized	Prime Tests		
run time ² b = 40 b = 1000 b = 1mil	Miller-Rabin b^2 2^{10} 2^{20} 2^{40}	Fermat ¹	¹ some false positives ² ignoring poly-log factors

Fermat Test

 $\mathsf{Pick}\ 1 < a < N \text{ at random}. \ N \text{ prime} \Rightarrow a^{N-1} \equiv 1 \mod N.$

Randomized Prime Tests									
	Miller-Rabin	\mathbf{Fermat}^1	¹ some false positives						
run time ²	b^2	"	² ignoring poly-log factors						
<i>b</i> = 40	2 ¹⁰								
b = 1000	2 ²⁰								
b = 1mil	2 ⁴⁰								

Deterministic Prime Tests								
	trial div	MR w GRH	AKS	GNFS				
run time ²	2 ^{b/2}	<i>b</i> ⁴	b^6	$2^{O(b^{\frac{1}{3}}\log^{\frac{2}{3}}(b))}$				
<i>b</i> = 40	2 ²⁰	2 ²⁰	2 ³⁰	2 ⁰⁽⁸⁾				
b = 1000	2 ⁵⁰⁰	2 ⁴⁰	2 ⁶⁰	2 ⁰⁽⁵⁰⁾				
b = 1000000	2 ^{500,000}	2 ⁸⁰	2 ¹²⁰	2 ⁰⁽⁵⁷⁵⁾				

(□) (圖) (필) (필) (필) (④) 9/18

For certain classes of integers, $\widetilde{O}(b^2)$ time

<ロト <回 > < 臣 > < 臣 > < 臣 > 三 の Q () 9/18

For certain classes of integers, $\widetilde{O}(b^2)$ time

Theorem (Lucas)

N > 1 is prime \Leftrightarrow

For certain classes of integers, $\widetilde{O}(b^2)$ time

Theorem (Lucas)

$$N > 1$$
 is prime $\Leftrightarrow \exists$ a, $1 < a < N$ s.t.

•
$$a^{N-1} \equiv 1 \mod N$$
, and

For certain classes of integers, $\widetilde{O}(b^2)$ time

Theorem (Lucas)

$$N > 1$$
 is prime $\Leftrightarrow \exists a, 1 < a < N s.t.$

•
$$a^{N-1}\equiv 1 \mod N$$
, and

• \forall prime q s.t. q|(N-1),

9/18

(日) (四) (E) (E) (E)

Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}(b^2)$ time

Theorem (Lucas)

N > 1 is prime $\Leftrightarrow \exists$ a, 1 < a < N s.t.

•
$$a^{N-1}\equiv 1 \mod N$$
, and

• \forall prime q s.t. $q|(N-1), a^{(N-1)/q} \not\equiv 1 \mod N$

For certain classes of integers, $\widetilde{O}(b^2)$ time

Theorem (Lucas)

$$N > 1$$
 is prime $\Leftrightarrow \exists a, 1 < a < N s.t.$

•
$$a^{N-1} \equiv 1 \mod N$$
, and

•
$$\forall$$
 prime q s.t. $q|(N-1), a^{(N-1)/q} \not\equiv 1 \mod N$

Example:

For certain classes of integers, $\widetilde{O}(b^2)$ time

Theorem (Lucas)

$$N > 1$$
 is prime $\Leftrightarrow \exists a, 1 < a < N$ s.t.

•
$$a^{N-1}\equiv 1 \mod N$$
, and

•
$$\forall$$
 prime q s.t. $q|(N-1)$, $a^{(N-1)/q} \not\equiv 1 \mod N$

Example:

- *N* = 29
- $2^{28} \equiv 1 \mod 29$

For certain classes of integers, $\widetilde{O}(b^2)$ time

Theorem (Lucas)

$$N > 1$$
 is prime $\Leftrightarrow \exists a, 1 < a < N s.t.$

•
$$a^{N-1}\equiv 1 \mod N$$
, and

•
$$\forall$$
 prime q s.t. $q|(N-1), a^{(N-1)/q} \not\equiv 1 \mod N$

Example:

- *N* = 29
- $2^{28} \equiv 1 \mod 29$
- $2^4 \equiv 16 \mod 29$,
Deterministic Prime Tests

For certain classes of integers, $\widetilde{O}(b^2)$ time

Theorem (Lucas)

$$N > 1$$
 is prime $\Leftrightarrow \exists a, 1 < a < N s.t.$

•
$$a^{N-1}\equiv 1 \mod N$$
, and

• \forall prime q s.t. $q|(N-1), a^{(N-1)/q} \not\equiv 1 \mod N$

Example:

• *N* = 29

•
$$2^{28} \equiv 1 \mod 29$$

•
$$2^4\equiv 16\mod 29$$
, $2^{14}\equiv 28\mod 29$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

10/18

Strategy for the Search

• Choose a number N (such that $N \pm 1$ is factored)

• Choose a number N (such that $N \pm 1$ is factored)

• E.g., set
$$N - 1 = k \cdot 2^{3,330,000}$$
, k small

• Choose a number N (such that $N \pm 1$ is factored)

• E.g., set
$$N - 1 = k \cdot 2^{3,330,000}$$
, k small

• Test if N is prime

11/18

Basic Framework

• Choose a number N (such that $N \pm 1$ is factored)

• E.g., set
$$N - 1 = k \cdot 2^{3,330,000}$$
, k small

- Test if N is prime
- Repeat

• Choose a number N (such that $N \pm 1$ is factored)

• E.g., set
$$N - 1 = k \cdot 2^{3,330,000}$$
, k small

- Test if N is prime
- Repeat

Prime Number Theorem

• Choose a number N (such that $N \pm 1$ is factored)

• E.g., set
$$N - 1 = k \cdot 2^{3,330,000}$$
, k small

- Test if N is prime
- Repeat

Prime Number Theorem

• Choose a number N (such that $N \pm 1$ is factored)

• E.g., set
$$N - 1 = k \cdot 2^{3,330,000}$$
, k small

- Test if N is prime
- Repeat

Prime Number Theorem

•
$$\Pr[d \text{ digit } N \text{ is prime }] \approx \frac{1}{d \ln 10}$$

• Choose a number N (such that $N \pm 1$ is factored)

• E.g., set
$$N - 1 = k \cdot 2^{3,330,000}$$
, k small

- Test if N is prime
- Repeat

Prime Number Theorem

Number of primes at most $x = \Pi(x) \sim \frac{x}{\ln x}$

• $\Pr[d \text{ digit } N \text{ is prime }] \approx \frac{1}{d \ln 10}$ (heuristic, GRH)

• Choose a number N (such that $N \pm 1$ is factored)

• E.g., set
$$N - 1 = k \cdot 2^{3,330,000}$$
, k small

- Test if N is prime
- Repeat

Prime Number Theorem

- $\Pr[d \text{ digit } N \text{ is prime }] \approx \frac{1}{d \ln 10}$ (heuristic, GRH)
- Test $d(\ln 10)(\ln 2)$ numbers \Leftrightarrow 50% chance to find 1 prime

• Choose a number N (such that $N \pm 1$ is factored)

• E.g., set
$$N - 1 = k \cdot 2^{3,330,000}$$
, k small

- Test if N is prime
- Repeat

Prime Number Theorem

- $\Pr[d \text{ digit } N \text{ is prime }] \approx \frac{1}{d \ln 10}$ (heuristic, GRH)
- Test $d(\ln 10)(\ln 2)$ numbers \Leftrightarrow 50% chance to find 1 prime
- $d = 13 \Leftrightarrow$ test about 21 numbers

• Choose a number N (such that $N \pm 1$ is factored)

• E.g., set
$$N - 1 = k \cdot 2^{3,330,000}$$
, k small

- Test if N is prime
- Repeat

Prime Number Theorem

- $\Pr[d \text{ digit } N \text{ is prime }] \approx \frac{1}{d \ln 10}$ (heuristic, GRH)
- Test $d(\ln 10)(\ln 2)$ numbers \Leftrightarrow 50% chance to find 1 prime
- $d = 13 \Leftrightarrow$ test about 21 numbers
- $d = 1,000,000 \Leftrightarrow$ test about 1.6 million

• Test for small factors

12/18

イロン イロン イヨン イヨン 三油

For about $d(\ln 10)(\ln 2)$ many N...

• Test for small factors $\Leftrightarrow O(d)$ time (or less) each test

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

$$\prod_{p\leq T} \left(1-\frac{1}{p}\right)$$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

$$\prod_{p \leq T} \left(1 - \frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln(T)}$$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Theorem (Mertens' formula)

$$\prod_{p \leq T} \left(1 - \frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln(T)}$$

• T - threshold for trial division

12/18

イロン イロン イヨン イヨン 三油

For about $d(\ln 10)(\ln 2)$ many N...

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

$$\prod_{p \leq T} \left(1 - \frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln(T)}$$

- T threshold for trial division
- $\gamma = 0.57721$, $e^{-\gamma} = 0.56145...$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Theorem (Mertens' formula)

$$\prod_{p\leq T} \left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln(T)}$$

• T - threshold for trial division

•
$$\gamma = 0.57721$$
, $e^{-\gamma} = 0.56145...$

• $T = 10^6 \Rightarrow \Pr$ pass trial division $\approx \frac{1}{25}$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Theorem (Mertens' formula)

$$\prod_{p \leq T} \left(1 - \frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln(T)}$$

• T - threshold for trial division

•
$$\gamma = 0.57721$$
, $e^{-\gamma} = 0.56145...$

• $T = 10^6 \Rightarrow$ Pr pass trial division $\approx \frac{1}{25}$ (heuristic, GRH)

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Theorem (Mertens' formula)

$$\prod_{p\leq T} \left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\ln(T)}$$

• T - threshold for trial division

•
$$\gamma = 0.57721$$
, $e^{-\gamma} = 0.56145...$

- $T = 10^6 \Rightarrow$ Pr pass trial division $\approx \frac{1}{25}$ (heuristic, GRH)
- $T = 10^{12} \Rightarrow \Pr$ pass trial division $\approx \frac{1}{50}$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50 th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Theorem (Pomerance)

Let
$$\mathcal{P}_a(x) = \#$$
 composites $N \leq x$ s.t. $a^{N-1} \equiv 1 \mod N$.

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50 th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Theorem (Pomerance)

Let
$$\mathcal{P}_a(x) = \#$$
 composites $N \leq x$ s.t. $a^{N-1} \equiv 1 \mod N$.

$$\mathcal{P}_{a}(x)/x \leq 1/e^{\ln(x)\ln\ln\ln(x)/(2\ln\ln(x))}$$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50 th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Theorem (Pomerance)

Let
$$\mathcal{P}_a(x) = \#$$
 composites $N \leq x$ s.t. $a^{N-1} \equiv 1 \mod N$.

$$\mathcal{P}_{\mathsf{a}}(x)/x \leq 1/e^{\ln(x)\ln\ln\ln(x)/(2\ln\ln(x))}$$

• *N* passes Fermat test \Leftrightarrow Pr *N* composite $\leq \frac{d \ln(10)}{e^{d \ln(10) \ln \ln(d \ln(10))/(2 \ln(d \ln(10)))}}$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50 th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Theorem (Pomerance)

Let
$$\mathcal{P}_a(x) = \#$$
 composites $N \leq x$ s.t. $a^{N-1} \equiv 1 \mod N$.

$$\mathcal{P}_{\mathsf{a}}(x)/x \leq 1/e^{\ln(x)\ln\ln\ln(x)/(2\ln\ln(x))}$$

• *N* passes Fermat test \Leftrightarrow Pr *N* composite

$$\leq \frac{d\ln(10)}{e^{d\ln(10)\ln\ln(d\ln(10))/(2\ln(d\ln(10)))}}$$

•
$$d = 1000 \Rightarrow \frac{1}{10^{129}}$$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50 th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Theorem (Pomerance)

Let
$$\mathcal{P}_a(x) = \#$$
 composites $N \leq x$ s.t. $a^{N-1} \equiv 1 \mod N$.

$$\mathcal{P}_{\mathsf{a}}(x)/x \leq 1/e^{\ln(x)\ln\ln\ln(x)/(2\ln\ln(x))}$$

• *N* passes Fermat test \Leftrightarrow Pr *N* composite $d \ln(10)$

 $\leq \frac{d\ln(10)}{e^{d\ln(10)\ln\ln(d\ln(10))/(2\ln(d\ln(10)))}}$

•
$$d = 1000 \Rightarrow \frac{1}{10^{129}}$$
, $d = 1,000,000 \Rightarrow \frac{10^{10}}{10^{90,000}}$
- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Time to find *d* digit prime (heuristic)

 $\widetilde{O}(d^3)$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Time to find *d* digit prime (heuristic)

 $\widetilde{O}(d^3)$

• d = 17M

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ ()
14/18

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Time to find *d* digit prime (heuristic)

 $\widetilde{O}(d^3)$

•
$$d = 17M \Rightarrow \widetilde{O}(4.9 \cdot 10^{21})$$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Time to find *d* digit prime (heuristic)

 $\widetilde{O}(d^3)$

• $d = 17M \Rightarrow \widetilde{O}(4.9 \cdot 10^{21}) \Rightarrow \approx 150,000 \text{ CPU years}$ (with 10^9 operations/second/CPU)

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Time to find *d* digit prime (heuristic)

 $\widetilde{O}(d^3)$

- $d = 17M \Rightarrow \widetilde{O}(4.9 \cdot 10^{21}) \Rightarrow \approx 150,000 \text{ CPU years}$ (with 10^9 operations/second/CPU)
 - Actually took 4 years, $\approx 25,000 \text{ computers}$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Time to find *d* digit prime (heuristic)

 $\widetilde{O}(d^3)$

- $d = 17M \Rightarrow \widetilde{O}(4.9 \cdot 10^{21}) \Rightarrow \approx 150,000 \text{ CPU years}$ (with 10^9 operations/second/CPU)
 - Actually took 4 years, $\approx 25,000 \text{ computers}$
- d = 712K

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Time to find *d* digit prime (heuristic)

 $\widetilde{O}(d^3)$

• $d = 17M \Rightarrow \widetilde{O}(4.9 \cdot 10^{21}) \Rightarrow \approx 150,000 \text{ CPU years}$ (with 10^9 operations/second/CPU) • Actually took 4 years, $\approx 25,000$ computers • $d = 712K \Rightarrow \widetilde{O}(3.6 \cdot 10^{17})$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Time to find *d* digit prime (heuristic)

 $\widetilde{O}(d^3)$

• $d = 17M \Rightarrow \widetilde{O}(4.9 \cdot 10^{21}) \Rightarrow \approx 150,000 \text{ CPU years}$ (with 10⁹ operations/second/CPU) • Actually took 4 years, $\approx 25,000 \text{ computers}$ • $d = 712K \Rightarrow \widetilde{O}(3.6 \cdot 10^{17}) \Rightarrow \approx 11 \text{ CPU years}$

- Test for small factors $\Leftrightarrow O(d)$ time (or less) each test
 - $\sim \frac{1}{50th}$ pass trial division (heuristic, GRH)
- Fermat test $\Leftrightarrow \widetilde{O}(d^2)$ time
- Lucas test $\Leftrightarrow \approx \widetilde{O}(d^2)$ time (heuristic, GRH)

Time to find *d* digit prime (heuristic)

 $\widetilde{O}(d^3)$

- $d = 17M \Rightarrow \widetilde{O}(4.9 \cdot 10^{21}) \Rightarrow \approx 150,000$ CPU years (with 10⁹ operations/second/CPU)
 - Actually took 4 years, $\approx 25,000 \text{ computers}$
- $d = 712K \Rightarrow \widetilde{O}(3.6 \cdot 10^{17}) \Rightarrow \approx 11 \text{ CPU years}$
 - Actually took 1 month, $\approx 150~{\rm cores}$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ク へ や 15 / 18

• Heuristic is "good enough"

<ロ > < 部 > < 言 > く 言 > 三 の Q C 15 / 18

15 / 18

Practical considerations

- Heuristic is "good enough"
- Constant factors matter

・ロト ・回ト ・ヨト ・ヨト

15/18

Practical considerations

- Heuristic is "good enough"
- Constant factors matter
- Which math library matters: GMP, gwNum

- Heuristic is "good enough"
- Constant factors matter
- Which math library matters: GMP, gwNum

How many processes/computer: for 4 core CPU, 2 processes

(using double-wide floating point FFT for multiplication)

- Heuristic is "good enough"
- Constant factors matter
- Which math library matters: GMP, gwNum
- How many processes/computer: for 4 core CPU, 2 processes

(using double-wide floating point FFT for multiplication)

• Choose goal based on available CPUs

Thank You, The End

Thank You, The End

Links

- Prime Pages, by Chris Caldwell THE source of information on prime records, and the official prime records database
- On the Distribution of Pseudoprimes by Pomerance scarcity of Fermat pseudoprimes
- An Amazing Prime Heuristic same heuristic arguments we presented today
- Software/libraries we use: GMP, OpenPFGW