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Standard Use of PRG's vs. Typ-Correct

Standard Derandomization
[Nisan & Wigderson, ...]

Typ-Correct Derandomization
[Kinne, Van Melkebeek, Shaltiel]

e Always correct

e Run PRG many times

e Need exponential stretch
e Conditional results

e Small # mistakes

e Run PRG only once

e Need only poly stretch

e Unconditional results:

fast parallel time, streaming,
communication protocols
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Computational Complexity Theory

How much time, memory space, etc. are needed to solve
problems?

o Is nondeterminism powerful? P vs. NP

o Conjecture: P=£ NP

e Techniques: hierarchy theorems, others

o Is randomness powerful? P vs. BPP, L vs. BPL

o Conjecture: P=BPP, L=BPL

e My work: derandomization, hierarchy theorems
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The End, Thank You!

Slides available at:
http://www.kinnejeff.com/GoSycamores/
(or E-mail me)

More on my research (slides, papers, etc.) at:
http://www.kinnejeff.com/
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