Two Big Questions: P. vs. NP and P. vs. BPP

Jeff Kinne

University of Wisconsin-Madison

Indiana State University, March 26, 2010

How much **time**, **memory space**, **etc**. are needed to solve problems?

• Is nondeterminism powerful?

How much **time**, **memory space**, **etc**. are needed to solve problems?

• Is nondeterminism powerful? P vs. NP

- Is nondeterminism powerful? P vs. NP
 - Conjecture: P≠ NP

- Is nondeterminism powerful? P vs. NP
 - Conjecture: P≠ NP
 - Techniques: hierarchy theorems, others

- Is nondeterminism powerful? P vs. NP
 - Conjecture: P≠ NP
 - Techniques: hierarchy theorems, others
- Is randomness powerful?

- Is nondeterminism powerful? P vs. NP
 - Conjecture: P≠ NP
 - Techniques: hierarchy theorems, others
- Is randomness powerful? P vs. BPP, L vs. BPL

- Is nondeterminism powerful? P vs. NP
 - Conjecture: P≠ NP
 - Techniques: hierarchy theorems, others
- Is randomness powerful? P vs. BPP, L vs. BPL
 - Conjecture: P=BPP, L=BPL

- Is nondeterminism powerful? P vs. NP
 - Conjecture: P≠ NP
 - Techniques: hierarchy theorems, others
- Is randomness powerful? P vs. BPP, L vs. BPL
 - Conjecture: P=BPP, L=BPL
 - My work: derandomization, hierarchy theorems

Introducing two Big Questions

Decision Problem: yes/no questions

Amount of working space memory needed

Amount of working space memory needed

Amount of working space memory needed

Bounded error: Correct with probability > 99%

•
$$p(x) = x^3 \cdot (3x - x^2)^2 - x^4 \cdot (2x^3 + 5x) + x \cdot (4x^2 - x)^3$$

- $p(x) = x^3 \cdot (3x x^2)^2 x^4 \cdot (2x^3 + 5x) + x \cdot (4x^2 x)^3$
- Do all terms cancel?

- $p(x) = x^3 \cdot (3x x^2)^2 x^4 \cdot (2x^3 + 5x) + x \cdot (4x^2 x)^3$
- Do all terms cancel?

- $p(x) = x^3 \cdot (3x x^2)^2 x^4 \cdot (2x^3 + 5x) + x \cdot (4x^2 x)^3$
- Do all terms cancel?

•
$$p(x_1, x_2, x_3, x_4) = x_4^5 \cdot (x_1 - x_2 - x_3)^{30} + (x_4 + x_3 - x_1)^{15} \cdot (x_3 - x_2 + x_1)^{20} - (x_2 - x_3 + x_4)^{20} \cdot (x_2 + x_1)^{15}$$

- $p(x_1, x_2, x_3, x_4) = x_4^5 \cdot (x_1 x_2 x_3)^{30} + (x_4 + x_3 x_1)^{15} \cdot (x_3 x_2 + x_1)^{20} (x_2 x_3 + x_4)^{20} \cdot (x_2 + x_1)^{15}$
- Do all terms cancel?

- $p(x_1, x_2, x_3, x_4) = x_4^5 \cdot (x_1 x_2 x_3)^{30} + (x_4 + x_3 x_1)^{15} \cdot (x_3 x_2 + x_1)^{20} (x_2 x_3 + x_4)^{20} \cdot (x_2 + x_1)^{15}$
- Do all terms cancel?

- $p(x_1, x_2, x_3, x_4) = x_4^5 \cdot (x_1 x_2 x_3)^{30} + (x_4 + x_3 x_1)^{15} \cdot (x_3 x_2 + x_1)^{20} (x_2 x_3 + x_4)^{20} \cdot (x_2 + x_1)^{15}$
- Do all terms cancel?

Randomized Algorithm

• Pick point $(x_1, ..., x_4)$, each $x_i \in_R S$

- $p(x_1, x_2, x_3, x_4) = x_4^5 \cdot (x_1 x_2 x_3)^{30} + (x_4 + x_3 x_1)^{15} \cdot (x_3 x_2 + x_1)^{20} (x_2 x_3 + x_4)^{20} \cdot (x_2 + x_1)^{15}$
- Do all terms cancel?

- Pick point $(x_1,...,x_4)$, each $x_i \in_R S$
- p non-zero, degree d

Multi-variate Polynomial Identity Testing

- $p(x_1, x_2, x_3, x_4) = x_4^5 \cdot (x_1 x_2 x_3)^{30} + (x_4 + x_3 x_1)^{15} \cdot (x_3 x_2 + x_1)^{20} (x_2 x_3 + x_4)^{20} \cdot (x_2 + x_1)^{15}$
- Do all terms cancel?

Randomized Algorithm

- Pick point $(x_1, ..., x_4)$, each $x_i \in_R S$
- p non-zero, degree $d \Rightarrow \Pr[p(x_1,...,x_4)=0] \leq \frac{d}{|S|}$

• BPP: Bounded-error Probabilistic Poly time

• BPP: Bounded-error Probabilistic Poly time , BPL: log space

- BPP: Bounded-error Probabilistic Poly time , BPL: log space
- $P \stackrel{?}{=} BPP$

Nondeterministic Algorithm

Graph 3-Coloring

Graph 3-Coloring

Nondeterministic Algorithm

Nondeterministic Algorithm

• NP: Nondeterministic Polynomial time

Nondeterministic Algorithm

- NP: Nondeterministic Polynomial time
- "NP-Complete" problems: 3-Coloring, TSP, Knapsack, ...

- NP: Nondeterministic Polynomial time
- "NP-Complete" problems: 3-Coloring, TSP, Knapsack, ...
- \bullet P $\stackrel{?}{=}$ NP

Nondeterministic Algorithm

- NP: Nondeterministic Polynomial time
- "NP-Complete" problems: 3-Coloring, TSP, Knapsack, ...
- \bullet P $\stackrel{?}{=}$ NP $NP \stackrel{?}{=} coNP$

Two Big Questions

$$P \stackrel{?}{=} NP$$

Is finding proofs as easy as verifying them?

Is 3-coloring in Polynomial Time?

Two Big Questions

$$P \stackrel{?}{=} NP$$

Is finding proofs as easy as verifying them?

Is 3-coloring in Polynomial Time?

$$P \stackrel{?}{=} BPP$$

Does randomness truly add power?

Computational Complexity Theory

How much **time**, **memory space**, **etc**. are needed to solve problems?

- Is nondeterminism powerful? P vs. NP
 - Conjecture: $P \neq NP$
 - Techniques: hierarchy theorems, others
- Is randomness powerful? P vs. BPP, L vs. BPL
 - Conjecture: P=BPP, L=BPL
 - My work: derandomization, hierarchy theorems

Derandomization

Naive Derandomization

Try all possible random bit strings

Try all possible random bit strings - exponentially many

Poly many strings to try

Poly many strings to try $\Rightarrow O(\log n)$ seed, exp stretch

Poly many strings to try $\Rightarrow O(\log n)$ seed, exp stretch

Seed length n, poly stretch

Standard Use of PRG's vs. Typ-Correct

Standard Use of PRG's vs. Typ-Correct

Standard Derandomization

[Nisan & Wigderson, ...]

Typ-Correct Derandomization

[Kinne, Van Melkebeek, Shaltiel]

Standard Derandomization [Nisan & Wigderson,]	Typ-Correct Derandomization [Kinne, Van Melkebeek, Shaltiel]			
Always correct	• Small # mistakes			

Standard Derandomization

[Nisan & Wigderson, ...]

Typ-Correct Derandomization [Kinne, Van Melkebeek, Shaltiel]

• Small # mistakes

• Run PRG many times

Always correct

Run PRG only once

Standard Derandomization

[Nisan & Wigderson, ...]

- Always correct
- Run PRG many times
- Need exponential stretch

Typ-Correct Derandomization

[Kinne, Van Melkebeek, Shaltiel]

- Small # mistakes
- Run PRG only once
- Need only poly stretch

Standard Derandomization

[Nisan & Wigderson, ...]

- Always correct
- Run PRG many times
- Need exponential stretch
- Conditional results

Typ-Correct Derandomization

[Kinne, Van Melkebeek, Shaltiel]

- Small # mistakes
- Run PRG only once
- Need only poly stretch
- Unconditional results:
 fast parallel time, streaming,
 communication protocols

Computational Complexity Theory

How much **time**, **memory space**, **etc**. are needed to solve problems?

- Is nondeterminism powerful? P vs. NP
 - Conjecture: P≠ NP
 - Techniques: hierarchy theorems, others
- Is randomness powerful? P vs. BPP, L vs. BPL
 - Conjecture: P=BPP, L=BPL
 - My work: derandomization, hierarchy theorems

• Fix a model of computing

 Fix a model of computing (deterministic, randomized, nondeterministic)

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

Poly time = n time

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

- Fix a model of computing (deterministic, randomized, nondeterministic)
- Can we achieve more given more resources?

• My work: hierarchy theorems for randomized algorithms

Computational Complexity Theory

How much **time**, **memory space**, **etc**. are needed to solve problems?

- Is nondeterminism powerful? P vs. NP
 - Conjecture: P≠ NP
 - Techniques: hierarchy theorems, others
- Is randomness powerful? P vs. BPP, L vs. BPL
 - Conjecture: P=BPP, L=BPL
 - My work: derandomization, hierarchy theorems

All Algorithms A_1 A_2 A_3 ...

	A_1	All Algori <i>A</i> ₂	thms A_3	time n	time n2
<u>x</u> 1	$A_1(x_1)$	$A_2(x_1)$	$A_3(x_1)$		
All Inputs x_3	$A_1(x_2)$	$A_2(x_2)$	$A_3(x_2)$	•••	
$\frac{1}{4}$ x_3	$A_1(x_3)$	$A_2(x_3)$	$A_3(x_3)$		
÷		:			

• What if $Pr[A_1(x_1) = \text{"yes"}] \approx .5$?

Randomized Algorithm

Bounded error: Correct with probability > 99%

• What if $Pr[A_1(x_1) = \text{"yes"}] \approx .5$?

- What if $Pr[A_1(x_1) = \text{"yes"}] \approx .5$?
- Then D does not have bounded error, not valid

Make sure D has bounded error

Make sure *D* has bounded error − 1 bit of advice

• Yes, for algorithms with 1 bit of advice!

• My work [Kinne, Van Melkebeek]

• Yes, for algorithms with 1 bit of advice!

My work [Kinne, Van Melkebeek]
 Memory Space hierarchies: randomized, quantum, ...

Computational Complexity Theory

How much **time**, **memory space**, **etc**. are needed to solve problems?

- Is nondeterminism powerful? P vs. NP
 - Conjecture: $P \neq NP$
 - Techniques: hierarchy theorems, others
- Is randomness powerful? P vs. BPP, L vs. BPL
 - Conjecture: P=BPP, L=BPL
 - My work: derandomization, hierarchy theorems

The End, Thank You!

The End, Thank You!

```
Slides available at:
http://www.kinnejeff.com/GoSycamores/
(or E-mail me)
```

More on my research (slides, papers, etc.) at: http://www.kinnejeff.com/