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Computational Complexity NP Exponential Lower Bounds

Notes

Pictures on the chalk board (sorry to online viewers...)

Slides will be online at http://www.kinnejeff.com

General-purpose links for complexity theory:
Computational Complexity: A Modern Approach
lecture notes
Wikipedia
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Computational Complexity NP Exponential Lower Bounds

Goal

What is the smallest running time possible?

Requires: upper bound and lower bound

Examples

Addition

Multiplication

3-coloring

Factoring
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Computational Complexity NP Exponential Lower Bounds

Other Resources/Goals

Memory space

Nondeterminism

Communication

Non-uniformity

Randomness

Quantumness

...

Average-case , approximation

See, e.g., the the “Complexity Zoo”
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Why the Zoo of Complexity Classes?

Diverse goals in the world

Class captures important/interesting problems – e.g. NP
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NP
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Computational Complexity NP Exponential Lower Bounds

P versus NP problem

If P = NP...

Perfect optimization

Computer search to prove unknown conjectures

No cryptography/encryption (see one-way functions, RSA)

If P 6= NP...

Cannot approximate some optimization problems
(PCP Theorem – “randomized” proofs)

Need more to get cryptography

NP still could be “normally” easy

7 / 16
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Computational Complexity NP Exponential Lower Bounds

Definition

NTIME(t) – guess t size certificate

Trivial Upper Bound

NTIME(t) can be solved in 2O(t) time.

Slightly better, e.g., 3-coloring∑n
k=0

(n
k

)
k23k/3 ≤ n2

∑n
k=0

(n
k

)
3k/3 = n2(1 + 31/3)n

Number of maximal independent sets is at most 3n/3.

Look at all subgraphs GS from smallest to largest

OPT(GS) = 1 + min(OPT(GS−T ) — T a max ind set in GS).

survey on exact NP-complete algorithms
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Computational Complexity NP Exponential Lower Bounds

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
cannot be decided in time 2εn time for some ε > 0.

Not true for 3-coloring.

How close are we to proving this?

Undecidable problems – e.g. Halting Problem

Almost all decision problems are undecidable.

Smallest class known to require 2n time? ... Exponential Time
(diagonalization...)

It could be that 3SAT is in O(n) time.

9 / 16
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Computational Complexity NP Exponential Lower Bounds

Theorem

SAT cannot be solved in simultaneous time nc and space nd when
c · (c + d) < 2.

survey on similar results

Definition: NTIME(n2) – guess O(n2) size certificate

If theorem false...

NTIME(n2) ⊆ time n2c , space n2d

⊆ ∃ ∀ TIME(nc+d)

⊆ NTIME(nc·(c+d))

Contradiction if 2 > c · (c + d)
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Computational Complexity NP Exponential Lower Bounds

Parity

Is number of 1’s in binary string even or odd?

Theorem (Hastad)

A depth d circuit for parity has size at least 2ε·n1/(d−1)
for some

constant ε > 0.

Theorem (Razborov-Smolensky)

Same as above, but size is 2ε·n1/(2d)
.

The Complexity of Finite Functions, Boppana and Sipser
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Theorem (Razborov-Smolensky)

A depth d circuit for parity has size at least 2ε·n1/(2d)
for some

constant ε > 0.

Depth d , size S circuit

⇒ degree
√

n poly, makes at most 2n · S

2n1/(2d)/2
mistakes

Any
√

n-degree poly makes at least 2n · 1
50 mistakes
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“Enhanced” constant-depth circuits

Allow more gates than just AND, OR, NOT

mod p, parity, majority

Intermediate between constant-depth and not

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix
permanent have size at least S(n),
for S(n) that satisfy S (O(d))(n) < 2n.
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“Hard” problem H in EXP requires size 2n (uniform) circuits

Assume depth d , size S(n) circuits for permanent

⇒ size ≈ S(2n), depth d circuit C for H

Bottom majority gates in C ⇒
permanent question of size ≈ log(S(2n)) + n
size S1 = S(log(S(2n)) + n) circuit
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To Conclude...
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