Lower Bounds in Theory of Computing

Jeff Kinne
Indiana State University, Math and CS Dept.

Math and CS Dept. Seminar, March 21, 2012

Notes

- Pictures on the chalk board (sorry to online viewers...)
- Slides will be online at http://www.kinnejeff.com
- General-purpose links for complexity theory: Computational Complexity: A Modern Approach lecture notes
Wikipedia

Goal

What is the smallest running time possible?

Goal

What is the smallest running time possible?

- Requires: upper bound and lower bound

Goal

What is the smallest running time possible?

- Requires: upper bound and lower bound

Goal

What is the smallest running time possible?

- Requires: upper bound and lower bound

Examples

- Addition

Goal

What is the smallest running time possible?

- Requires: upper bound and lower bound

Examples

- Addition
- Multiplication

Goal

What is the smallest running time possible?

- Requires: upper bound and lower bound

Examples

- Addition
- Multiplication
- 3-coloring

Goal

What is the smallest running time possible?

- Requires: upper bound and lower bound

Examples

- Addition
- Multiplication
- 3-coloring
- Factoring

Other Resources/Goals

- Memory space

Other Resources/Goals

- Memory space
- Nondeterminism

Other Resources/Goals

- Memory space
- Nondeterminism
- Communication

Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity

Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness

Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
- Quantumness

Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
- Quantumness
- ...

Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
- Quantumness
- ...
- Average-case

Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
- Quantumness
- ...
- Average-case, approximation

Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
- Quantumness
- ...
- Average-case, approximation
- See, e.g., the the "Complexity Zoo"

Why the Zoo of Complexity Classes?

- Diverse goals in the world

Why the Zoo of Complexity Classes?

- Diverse goals in the world
- Class captures important/interesting problems - e.g. NP

P versus NP problem

P versus NP problem
If $P=N P .$.

P versus NP problem

If $\mathbf{P}=$ NP...

- Perfect optimization

If $\mathbf{P}=\mathbf{N P} . .$.

- Perfect optimization
- Computer search to prove unknown conjectures

P versus NP problem

If $\mathbf{P}=\mathrm{NP} . .$.

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption

P versus NP problem

If $\mathbf{P}=\mathrm{NP} . .$.

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

P versus NP problem

If $\mathbf{P}=\mathbf{N P} .$.

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

If $P \neq N P .$.

P versus NP problem

If $\mathbf{P}=\mathrm{NP} . .$.

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

If $\mathrm{P} \neq \mathrm{NP}$...

- Cannot approximate some optimization problems

P versus NP problem

If $\mathbf{P}=\mathrm{NP} . .$.

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

If $\mathrm{P} \neq \mathrm{NP}$...

- Cannot approximate some optimization problems (PCP Theorem - "randomized" proofs)

P versus NP problem

If $\mathbf{P}=\mathrm{NP} . .$.

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

If $\mathrm{P} \neq \mathrm{NP}$...

- Cannot approximate some optimization problems (PCP Theorem - "randomized" proofs)
- Need more to get cryptography

P versus NP problem

If $\mathbf{P}=\mathrm{NP} . .$.

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

If $\mathrm{P} \neq \mathrm{NP}$...

- Cannot approximate some optimization problems (PCP Theorem - "randomized" proofs)
- Need more to get cryptography
- NP still could be "normally" easy

Definition

$\operatorname{NTIME}(t)$ - guess t size certificate

Definition

$\operatorname{NTIME}(t)$ - guess t size certificate

Trivial Upper Bound

$\operatorname{NTIME}(t)$ can be solved in $2^{O(t)}$ time.

Definition

$\operatorname{NTIME}(t)$ - guess t size certificate

Trivial Upper Bound

$\operatorname{NTIME}(t)$ can be solved in $2^{O(t)}$ time.

Slightly better, e.g., 3-coloring

- $\sum_{k=0}^{n}\binom{n}{k} k^{2} 3^{k / 3} \leq n^{2} \sum_{k=0}^{n}\binom{n}{k} 3^{k / 3}=n^{2}\left(1+3^{1 / 3}\right)^{n}$

Definition

$\operatorname{NTIME}(t)$ - guess t size certificate

Trivial Upper Bound

$\operatorname{NTIME}(t)$ can be solved in $2^{O(t)}$ time.

Slightly better, e.g., 3-coloring

- $\sum_{k=0}^{n}\binom{n}{k} k^{2} 3^{k / 3} \leq n^{2} \sum_{k=0}^{n}\binom{n}{k} 3^{k / 3}=n^{2}\left(1+3^{1 / 3}\right)^{n}$
- Number of maximal independent sets is at most $3^{n / 3}$.

Definition

$\operatorname{NTIME}(t)$ - guess t size certificate

Trivial Upper Bound

$\operatorname{NTIME}(t)$ can be solved in $2^{O(t)}$ time.

Slightly better, e.g., 3-coloring

- $\sum_{k=0}^{n}\binom{n}{k} k^{2} 3^{k / 3} \leq n^{2} \sum_{k=0}^{n}\binom{n}{k} 3^{k / 3}=n^{2}\left(1+3^{1 / 3}\right)^{n}$
- Number of maximal independent sets is at most $3^{n / 3}$.
- Look at all subgraphs G_{S} from smallest to largest

Definition

$\operatorname{NTIME}(t)$ - guess t size certificate

Trivial Upper Bound

$\operatorname{NTIME}(t)$ can be solved in $2^{O(t)}$ time.

Slightly better, e.g., 3-coloring

- $\sum_{k=0}^{n}\binom{n}{k} k^{2} 3^{k / 3} \leq n^{2} \sum_{k=0}^{n}\binom{n}{k} 3^{k / 3}=n^{2}\left(1+3^{1 / 3}\right)^{n}$
- Number of maximal independent sets is at most $3^{n / 3}$.
- Look at all subgraphs G_{S} from smallest to largest
- $\operatorname{OPT}\left(G_{S}\right)=1+\min \left(\operatorname{OPT}\left(G_{S-T}\right)-T\right.$ a max ind set in $\left.G_{S}\right)$.

Definition

$\operatorname{NTIME}(t)$ - guess t size certificate

Trivial Upper Bound

$\operatorname{NTIME}(t)$ can be solved in $2^{O(t)}$ time.

Slightly better, e.g., 3-coloring

- $\sum_{k=0}^{n}\binom{n}{k} k^{2} 3^{k / 3} \leq n^{2} \sum_{k=0}^{n}\binom{n}{k} 3^{k / 3}=n^{2}\left(1+3^{1 / 3}\right)^{n}$
- Number of maximal independent sets is at most $3^{n / 3}$.
- Look at all subgraphs G_{S} from smallest to largest
- $\operatorname{OPT}\left(G_{S}\right)=1+\min \left(\operatorname{OPT}\left(G_{S-T}\right)-T\right.$ a max ind set in $\left.G_{S}\right)$.

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon>0$.

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon>0$.

- Not true for 3-coloring.

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
 cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon>0$.

- Not true for 3-coloring.
- How close are we to proving this?

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon>0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems - e.g. Halting Problem

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon>0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems - e.g. Halting Problem
- Almost all decision problems are undecidable.

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon>0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems - e.g. Halting Problem
- Almost all decision problems are undecidable.
- Smallest class known to require 2^{n} time?

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon>0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems - e.g. Halting Problem
- Almost all decision problems are undecidable.
- Smallest class known to require 2^{n} time? ...

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon>0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems - e.g. Halting Problem
- Almost all decision problems are undecidable.
- Smallest class known to require 2^{n} time? ... Exponential Time

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon>0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems - e.g. Halting Problem
- Almost all decision problems are undecidable.
- Smallest class known to require 2^{n} time? ... Exponential Time (diagonalization...)

Exponential Time Hypothesis

3SAT (and some other NP-complete problems)
cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon>0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems - e.g. Halting Problem
- Almost all decision problems are undecidable.
- Smallest class known to require 2^{n} time? ... Exponential Time (diagonalization...)
- It could be that 3SAT is in $O(n)$ time.

Theorem

SAT cannot be solved in simultaneous time n^{c} and space n^{d} when $c \cdot(c+d)<2$.

Theorem

SAT cannot be solved in simultaneous time n^{c} and space n^{d} when $c \cdot(c+d)<2$.
survey on similar results

Theorem

SAT cannot be solved in simultaneous time n^{c} and space n^{d} when $c \cdot(c+d)<2$.
survey on similar results

- Definition: $\operatorname{NTIME}\left(n^{2}\right)$ - guess $O\left(n^{2}\right)$ size certificate

Theorem

SAT cannot be solved in simultaneous time n^{c} and space n^{d} when $c \cdot(c+d)<2$.
survey on similar results

- Definition: $\operatorname{NTIME}\left(n^{2}\right)$ - guess $O\left(n^{2}\right)$ size certificate
- If theorem false...

Theorem

SAT cannot be solved in simultaneous time n^{c} and space n^{d} when $c \cdot(c+d)<2$.
survey on similar results

- Definition: $\operatorname{NTIME}\left(n^{2}\right)$ - guess $O\left(n^{2}\right)$ size certificate
- If theorem false...
- $\operatorname{NTIME}\left(n^{2}\right) \subseteq$ time $n^{2 c}$, space $n^{2 d}$

Theorem

SAT cannot be solved in simultaneous time n^{c} and space n^{d} when $c \cdot(c+d)<2$.

survey on similar results

- Definition: $\operatorname{NTIME}\left(n^{2}\right)$ - guess $O\left(n^{2}\right)$ size certificate
- If theorem false...
- $\operatorname{NTIME}\left(n^{2}\right) \subseteq$ time $n^{2 c}$, space $n^{2 d}$
- $\subseteq \exists \forall \operatorname{TIME}\left(n^{c+d}\right)$

Theorem

SAT cannot be solved in simultaneous time n^{c} and space n^{d} when $c \cdot(c+d)<2$.

survey on similar results

- Definition: $\operatorname{NTIME}\left(n^{2}\right)$ - guess $O\left(n^{2}\right)$ size certificate
- If theorem false...
- $\operatorname{NTIME}\left(n^{2}\right) \subseteq$ time $n^{2 c}$, space $n^{2 d}$
- $\subseteq \exists \forall \operatorname{TIME}\left(n^{c+d}\right)$
- $\subseteq \operatorname{NTIME}\left(n^{c \cdot(c+d)}\right)$

Theorem

SAT cannot be solved in simultaneous time n^{c} and space n^{d} when $c \cdot(c+d)<2$.

survey on similar results

- Definition: $\operatorname{NTIME}\left(n^{2}\right)$ - guess $O\left(n^{2}\right)$ size certificate
- If theorem false...
- $\operatorname{NTIME}\left(n^{2}\right) \subseteq$ time $n^{2 c}$, space $n^{2 d}$
- $\subseteq \exists \forall \operatorname{TIME}\left(n^{c+d}\right)$
- $\subseteq \operatorname{NTIME}\left(n^{c \cdot(c+d)}\right)$
- Contradiction if $2>c \cdot(c+d)$

Exponential Lower Bounds

Parity

Is number of 1's in binary string even or odd?

Parity

Is number of 1's in binary string even or odd?

Theorem (Hastad)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1 /(d-1)}}$ for some constant $\epsilon>0$.

Parity

Is number of 1's in binary string even or odd?

Theorem (Hastad)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1 /(d-1)}}$ for some constant $\epsilon>0$.

Theorem (Razborov-Smolensky)

Same as above, but size is $2^{\epsilon \cdot n^{1 /(2 d)}}$.

Parity

Is number of 1's in binary string even or odd?

Theorem (Hastad)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1 /(d-1)}}$ for some constant $\epsilon>0$.

Theorem (Razborov-Smolensky)

Same as above, but size is $2^{\epsilon \cdot n^{1 /(2 d)}}$.
The Complexity of Finite Functions, Boppana and Sipser

Theorem (Razborov-Smolensky)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1 /(2 d)}}$ for some constant $\epsilon>0$.

Theorem (Razborov-Smolensky)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1 /(2 d)}}$ for some constant $\epsilon>0$.

- Depth d, size S circuit

Theorem (Razborov-Smolensky)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1 /(2 d)}}$ for some constant $\epsilon>0$.

- Depth d, size S circuit
- \Rightarrow degree \sqrt{n} poly, makes at most $2^{n} \cdot \frac{S}{2^{n^{1 /(2 d) / 2}}}$ mistakes

Theorem (Razborov-Smolensky)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1 /(2 d)}}$ for some constant $\epsilon>0$.

- Depth d, size S circuit
- \Rightarrow degree \sqrt{n} poly, makes at most $2^{n} \cdot \frac{S}{2^{n^{1 /(2 d) / 2}}}$ mistakes
- Any \sqrt{n}-degree poly makes at least $2^{n} \cdot \frac{1}{50}$ mistakes

"Enhanced" constant-depth circuits

"Enhanced" constant-depth circuits

- Allow more gates than just AND, OR, NOT

"Enhanced" constant-depth circuits

- Allow more gates than just AND, OR, NOT
- mod p, parity, majority

"Enhanced" constant-depth circuits

- Allow more gates than just AND, OR, NOT
- mod p, parity, majority
- Intermediate between constant-depth and not

"Enhanced" constant-depth circuits

- Allow more gates than just AND, OR, NOT
- mod p, parity, majority
- Intermediate between constant-depth and not

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$,

"Enhanced" constant-depth circuits

- Allow more gates than just AND, OR, NOT
- mod p, parity, majority
- Intermediate between constant-depth and not

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

- "Hard" problem H in EXP requires size 2^{n} (uniform) circuits

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

- "Hard" problem H in EXP requires size 2^{n} (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

- "Hard" problem H in EXP requires size 2^{n} (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S\left(2^{n}\right)$, depth d circuit C for H

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

- "Hard" problem H in EXP requires size 2^{n} (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S\left(2^{n}\right)$, depth d circuit C for H
- Bottom majority gates in $C \Rightarrow$

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

- "Hard" problem H in EXP requires size 2^{n} (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S\left(2^{n}\right)$, depth d circuit C for H
- Bottom majority gates in $C \Rightarrow$ permanent question of size $\approx \log \left(S\left(2^{n}\right)\right)+n$

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

- "Hard" problem H in EXP requires size 2^{n} (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S\left(2^{n}\right)$, depth d circuit C for H
- Bottom majority gates in $C \Rightarrow$ permanent question of size $\approx \log \left(S\left(2^{n}\right)\right)+n$ size $S_{1}=S\left(\log \left(S\left(2^{n}\right)\right)+n\right)$ circuit

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

- "Hard" problem H in EXP requires size 2^{n} (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S\left(2^{n}\right)$, depth d circuit C for H
- Bottom majority gates in $C \Rightarrow$ permanent question of size $\approx \log \left(S\left(2^{n}\right)\right)+n$ size $S_{1}=S\left(\log \left(S\left(2^{n}\right)\right)+n\right)$ circuit
- Next level of majority gates \Rightarrow

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

- "Hard" problem H in EXP requires size 2^{n} (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S\left(2^{n}\right)$, depth d circuit C for H
- Bottom majority gates in $C \Rightarrow$ permanent question of size $\approx \log \left(S\left(2^{n}\right)\right)+n$ size $S_{1}=S\left(\log \left(S\left(2^{n}\right)\right)+n\right)$ circuit
- Next level of majority gates \Rightarrow permanent question of size $\approx \log \left(S\left(2^{n}\right)\right)+n+S_{1}$

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n)<2^{n}$.

- "Hard" problem H in EXP requires size 2^{n} (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S\left(2^{n}\right)$, depth d circuit C for H
- Bottom majority gates in $C \Rightarrow$ permanent question of size $\approx \log \left(S\left(2^{n}\right)\right)+n$ size $S_{1}=S\left(\log \left(S\left(2^{n}\right)\right)+n\right)$ circuit
- Next level of majority gates \Rightarrow permanent question of size $\approx \log \left(S\left(2^{n}\right)\right)+n+S_{1}$

To Conclude...

