
Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Knuth-Morris-Pratt Algorithm

Kranthi Kumar Mandumula

December 18, 2011

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

outline

Definition
History
Components of KMP
Algorithm
Example
Run-Time Analysis
Advantages and Disadvantages
References

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Definition:

Best known for linear time for exact matching.
Compares from left to right.
Shifts more than one position.
Preprocessing approach of Pattern to avoid trivial
comparisions.
Avoids recomputing matches.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

History:

This algorithm was conceived by Donald Knuth
and Vaughan Pratt and independently by James
H.Morris in 1977.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

History:

Knuth, Morris and Pratt discovered first linear time
string-matching algorithm by analysis of the naive
algorithm.
It keeps the information that naive approach
wasted gathered during the scan of the text. By
avoiding this waste of information, it achieves a
running time of O(m + n).
The implementation of Knuth-Morris-Pratt
algorithm is efficient because it minimizes the total
number of comparisons of the pattern against the
input string.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Components of KMP:

The prefix-function u :
? It preprocesses the pattern to find matches of
prefixes of the pattern with the pattern itself.
? It is defined as the size of the largest prefix of
P[0..j − 1] that is also a suffix of P[1..j].
? It also indicates how much of the last
comparison can be reused if it fails.
? It enables avoiding backtracking on the string
‘S ’.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

m← length[p]
a[1]← 0
k ← 0
for q ← 2 to m do

while k > 0 and p[k + 1] , p[q] do
k ← a[k]

end while
if p[k + 1] = p[q] then

k ← k + 1
end if
a[q]← k

end for
return u
Here a = u

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Computation of Prefix-function with example:

Let us consider an example of how to compute u
for the pattern ‘p’.

Pattern a b a b a c a

I n i t i a l l y : m = leng th [p]= 7
u [1] = 0
k=0

where m, u[1], and k are the length of the pattern,
prefix function and initial potential value
respectively.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Step 1: q = 2 , k = 0
u [2] = 0

q 1 2 3 4 5 6 7
p a b a b a c a
u 0 0

Step 2: q = 3 , k = 0
u [3] = 1

q 1 2 3 4 5 6 7
p a b a b a c a
u 0 0 1

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Step 3: q = 4 , k = 1
u [4] = 2

q 1 2 3 4 5 6 7
p a b a b a c a
u 0 0 1 2

Step 4: q = 5 , k = 2
u [5] = 3

q 1 2 3 4 5 6 7
p a b a b a c a
u 0 0 1 2 3

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Step 5: q = 6 , k = 3
u [6] = 1

q 1 2 3 4 5 6 7
p a b a b a c a
u 0 0 1 2 3 1

Step 6: q = 7 , k = 1
u [7] = 1

q 1 2 3 4 5 6 7
p a b a b a c a
u 0 0 1 2 3 1 1

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

A f t e r i t e r a t i n g 6 times , the p r e f i x f u n c t i o n
computat ions i s complete :

q 1 2 3 4 5 6 7
p a b A b a c a
u 0 0 1 2 3 1 1

The running time of the prefix function is O(m).

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Algorithm

Step 1: I n i t i a l i z e the i npu t v a r i a b l e s :
n = Length o f the Text .
m = Length o f the Pat te rn .
u = Pre f i x − f u n c t i o n o f pa t t e rn (p) .
q = Number o f charac te rs matched .

Step 2: Def ine the v a r i a b l e :
q=0 , the beginning o f the match .

Step 3: Compare the f i r s t charac te r o f the pa t t e rn w i th f i r s t charac te r o f
t e x t .
I f match i s not found , s u b s t i t u t e the value o f u [q] to q .
I f match i s found , then increment the value o f q by 1 .

Step 4: Check whether a l l the pa t t e rn elements are matched wi th the t e x t
elements .
I f not , repeat the search process .
I f yes , p r i n t the number o f s h i f t s taken by the pa t t e rn .

Step 5: look f o r the next match .

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

n← length[S]
m← length[p]
a ← Compute Prefix function
q ← 0
for i ← 1 to n do

while q > 0 and p[q + 1] , S[i] do
q ← a[q]
if p[q + 1] = S[i] then

q ← q + 1
end if
if q == m then

q ← a[q]
end if

end while
end for

Here a = u

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Example of KMP algorithm:

Now let us consider an example so that the algorithm
can be clearly understood.

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Let us execute the KMP algorithm to find whether ‘p’
occurs in ‘S ’.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

I n i t i a l l y : n = s ize o f S = 15;
m = s ize o f p=7

Step 1: i = 1 , q = 0
comparing p [1] w i th S [1]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

P[1] does not match with S[1]. ‘p’ will be shifted one position to the right.

Step 2 : i = 2 , q = 0
comparing p [1] w i th S [2]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Step 3: i = 3 , q = 1
comparing p [2] w i th S [3] p [2] does not match wi th S [3]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Backt rack ing on p , comparing p [1] and S [3]
Step 4: i = 4 , q = 0

comparing p [1] w i th S [4] p [1] does not match wi th S [4]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Step 5: i = 5 , q = 0
comparing p [1] w i th S [5]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Step 6: i = 6 , q = 1
comparing p [2] w i th S [6] p [2] matches wi th S [6]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Step 7: i = 7 , q = 2
comparing p [3] w i th S [7] p [3] matches wi th S [7]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Step 8: i = 8 , q = 3
comparing p [4] w i th S [8] p [4] matches wi th S [8]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Step 9: i = 9 , q = 4
comparing p [5] w i th S [9] p [5] matches wi th S [9]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Step 10: i = 10 , q = 5
comparing p [6] w i th S[1 0] p [6] doesn ’ t matches wi th S[1 0]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Backt rack ing on p , comparing p [4] w i th S[1 0] because a f t e r mismatch q = u [5] = 3

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Step 11: i = 11 , q = 4
comparing p [5] w i th S[1 1]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Step 12: i = 12 , q = 5
comparing p [6] w i th S[1 2] p [6] matches wi th S[1 2]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Step 13: i = 13 , q = 6
comparing p [7] w i th S[1 3] p [7] matches wi th S[1 3]

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

pattern ‘p’ has been found to completely occur in
string ‘S ’. The total number of shifts that took place for
the match to be found are: i −m = 13-7 = 6 shifts.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Run-Time analysis:

O(m) - It is to compute the prefix function values.
O(n) - It is to compare the pattern to the text.
Total of O(n +m) run time.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Advantages and Disadvantages:

Advantages:

? The running time of the KMP algorithm is
optimal (O(m + n)), which is very fast.

? The algorithm never needs to move backwards
in the input text T. It makes the algorithm good for
processing very large files.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Advantages and Disadvantages:

Disadvantages:

? Doesn’t work so well as the size of the
alphabets increases. By which more chances of
mismatch occurs.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt
Algorithm

Kranthi Kumar
Mandumula

Graham A.Stephen, “String Searching Algorithms”,
year = 1994.

Donald Knuth, James H. Morris, Jr, Vaughan Pratt,
“Fast pattern matching in strings”, year = 1977.

Thomas H.Cormen; Charles E.Leiserson.,
Introduction to algorithms second edition , “The
Knuth-Morris-Pratt Algorithm”, year = 2001.

Kranthi Kumar Mandumula Knuth-Morris-Pratt Algorithm

