Mod n representations of complete multipartite graphs

Reza Akhtar ${ }^{1}$ Tony Evans ${ }^{2}$ Dan Pritikin ${ }^{1}$
${ }^{1}$ Miami University
${ }^{2}$ Wright State University

April 27th, 2012

Mod r Representations

Let G be a (finite, simple) graph and r a positive integer.

Definition

A representation of G modulo r is an injective map

$$
f: V(G) \rightarrow\{0,1, \ldots, r-1\}
$$

such that u, v are adjacent iff $\operatorname{gcd}(f(u)-f(v), r)=1$.

Mod r Representations

Let G be a (finite, simple) graph and r a positive integer.

Definition

A representation of G modulo r is an injective map

$$
f: V(G) \rightarrow\{0,1, \ldots, r-1\}
$$

such that u, v are adjacent iff $\operatorname{gcd}(f(u)-f(v), r)=1$.

Equivalently, we could define a representation modulo r as an injective map

$$
f: V(G) \rightarrow \mathbb{Z}_{r}
$$

such that u, v are adjacent iff $f(u)-f(v)$ is a unit in (the ring) $\mathbb{Z}_{\underline{\underline{r}}}$.

Unitary Cayley Graph

If we define $\operatorname{Cay}(r)$ to be the graph with vertex set $\{0,1, \ldots, r-1\}$ where adjacency is defined by

$$
i \leftrightarrow j \text { iff } \operatorname{gcd}(i-j, r)=1
$$

then clearly $\operatorname{Cay}(r)$ is representable modulo r.

Unitary Cayley Graph

If we define $\operatorname{Cay}(r)$ to be the graph with vertex set $\{0,1, \ldots, r-1\}$ where adjacency is defined by

$$
i \leftrightarrow j \text { iff } \operatorname{gcd}(i-j, r)=1
$$

then clearly $\operatorname{Cay}(r)$ is representable modulo r.
Moreover, for any graph G :
G is representable modulo r
G is isomorphic to an induced subgraph of $\operatorname{Cay}(r)$

Example

Figure: A representation modulo 9

Representation Number

The representation number of a graph G is defined by:

$$
\operatorname{rep}(G)=\min \{r: G \text { is representable modulo } r\}
$$

Representation Number

The representation number of a graph G is defined by:

$$
\operatorname{rep}(G)=\min \{r: G \text { is representable modulo } r\}
$$

Theorem

(Erdös and Evans 1989, Narayan 2003)
For every graph $G, \operatorname{rep}(G)$ exists. In particular, if $n=|V(G)|$ and p_{1}, \ldots, p_{n-1} are the first $n-1$ primes $\geq n-1$, then

$$
\operatorname{rep}(G) \leq \prod_{i=1}^{n-1} p_{i}
$$

and this bound is sharp.

Relationship to Product Dimension

If G is reduced (no two vertices have the same neighborhood), $\operatorname{rep}(G)$ is closely related to the product dimension of G :

The number of distinct prime divisors of $\operatorname{rep}(G)$ is at least the product dimension.

Simple example: edgeless graphs

Simple example: edgeless graphs

Proposition

$$
\operatorname{rep}\left(\overline{K_{n}}\right)=2 n
$$

Stars
 Complete Bipartite Graphs
 Complete Multipartite Graphs

Simple example: edgeless graphs

Proposition

$$
\operatorname{rep}\left(\overline{K_{n}}\right)=2 n
$$

Upper bound:
...
$2 n-6 \quad 2 n-4$
$2 n-2$

Simple example: edgeless graphs

Proposition

$$
r e p\left(\overline{K_{n}}\right)=2 n
$$

Upper bound:

Lower bound: if $k<2 n$, then any labeling modulo k must assign consecutive labels to some pair of vertices, contradicting the definition of representation.

General Bounds

- In general, $\operatorname{rep}(G)$ is not at all well-behaved with respect to standard graph operations (deleting a vertex, etc.)

General Bounds

- In general, $\operatorname{rep}(G)$ is not at all well-behaved with respect to standard graph operations (deleting a vertex, etc.)
- Proofs are much more number-theoretic than combinatorial and typically involve results on the distribution of primes.

General Bounds

- In general, $\operatorname{rep}(G)$ is not at all well-behaved with respect to standard graph operations (deleting a vertex, etc.)
- Proofs are much more number-theoretic than combinatorial and typically involve results on the distribution of primes.

Proposition
Let G be a graph and p the smallest prime divisor of $\operatorname{rep}(G)$. Then

$$
\omega(G) \leq p \leq \frac{\operatorname{rep}(G)}{\alpha(G)}
$$

Chinese Remainder Theorem

Given a prime factorization

$$
r=p_{1}^{e_{1}} \ldots p_{s}^{e_{s}}
$$

we have a ring isomorphism:

$$
\mathbb{Z}_{r} \cong \mathbb{Z}_{p_{1}^{e_{1}}} \times \ldots \times \mathbb{Z}_{p_{s}^{e_{s}}}
$$

so we can interpret a representation of G modulo r as a labeling of $V(G)$ by s-tuples as above.

This is particularly convenient because

$$
\mathbb{Z}_{r}^{*} \cong \mathbb{Z}_{p_{1}}^{*} \times \ldots \times \mathbb{Z}_{p_{s}}^{*}
$$

Representation Numbers of Stars

Representation Numbers of Stars

Theorem

$$
\operatorname{rep}\left(K_{1, n}\right)=\min \{r: 2 \mid r, \phi(r) \geq n\}
$$

where

$$
\phi(r)=|\{i: 1 \leq i \leq r-1, \operatorname{gcd}(i, r)=1\}|=r \prod_{p \mid r}\left(1-\frac{1}{p}\right)
$$

Upper bound

Given r even, $\phi(r) \geq n$,
Choose distinct (odd) integers a_{1}, \ldots, a_{n} between 1 and $r-1$ such that $\operatorname{gcd}\left(a_{i}, r\right)=1$.

Lower bound

If we pick an optimal labeling of $K_{1, n}$ modulo r, then by translating the labels, we may assume that the root is labeled 0 . This forces the labels on all the leaves to be relatively prime to r; hence $\phi\left(\operatorname{rep}\left(K_{1, n}\right)\right) \geq n$.

Lower bound

If we pick an optimal labeling of $K_{1, n}$ modulo r, then by translating the labels, we may assume that the root is labeled 0 . This forces the labels on all the leaves to be relatively prime to r; hence $\phi\left(\operatorname{rep}\left(K_{1, n}\right)\right) \geq n$.

Now if $p \geq n+1$ is any prime, then $\phi(2 p)=p-1 \geq n$, so (by the upper bound argument) $\operatorname{rep}\left(K_{1, n}\right) \leq 2 p$.

Lower bound

If we pick an optimal labeling of $K_{1, n}$ modulo r, then by translating the labels, we may assume that the root is labeled 0 . This forces the labels on all the leaves to be relatively prime to r; hence $\phi\left(\operatorname{rep}\left(K_{1, n}\right)\right) \geq n$.

Now if $p \geq n+1$ is any prime, then $\phi(2 p)=p-1 \geq n$, so (by the upper bound argument) $\operatorname{rep}\left(K_{1, n}\right) \leq 2 p$.
A number-theoretic result due to Nagura (1957) implies that for $n \geq 5$, there is always a prime p satisfying

$$
n<p<\frac{3}{2} n
$$

Lower bound

If we pick an optimal labeling of $K_{1, n}$ modulo r, then by translating the labels, we may assume that the root is labeled 0 . This forces the labels on all the leaves to be relatively prime to r; hence $\phi\left(\operatorname{rep}\left(K_{1, n}\right)\right) \geq n$.

Now if $p \geq n+1$ is any prime, then $\phi(2 p)=p-1 \geq n$, so (by the upper bound argument) $\operatorname{rep}\left(K_{1, n}\right) \leq 2 p$.
A number-theoretic result due to Nagura (1957) implies that for $n \geq 5$, there is always a prime p satisfying

$$
n<p<\frac{3}{2} n
$$

Thus for $n \geq 5, \operatorname{rep}\left(K_{1, n}\right)<3 n$.

Lower bound

If we pick an optimal labeling of $K_{1, n}$ modulo r, then by translating the labels, we may assume that the root is labeled 0 . This forces the labels on all the leaves to be relatively prime to r; hence $\phi\left(\operatorname{rep}\left(K_{1, n}\right)\right) \geq n$.

Now if $p \geq n+1$ is any prime, then $\phi(2 p)=p-1 \geq n$, so (by the upper bound argument) $\operatorname{rep}\left(K_{1, n}\right) \leq 2 p$.
A number-theoretic result due to Nagura (1957) implies that for $n \geq 5$, there is always a prime p satisfying

$$
n<p<\frac{3}{2} n
$$

Thus for $n \geq 5, \operatorname{rep}\left(K_{1, n}\right)<3 n$.
Finally, let q be the smallest prime divisor of $\operatorname{rep}\left(K_{1, n}\right)$. Then

$$
q \leq \operatorname{rep}\left(K_{1, n}\right) / \alpha\left(K_{1, n}\right)<3 n / n=3 ; \text { so } q=2
$$

Prime factorization of $\operatorname{rep}\left(K_{1, n}\right)$

Prime factorization of $\operatorname{rep}\left(K_{1, n}\right)$

Based on calculations using MAGMA:

Conjecture
$\operatorname{rep}\left(K_{1, n}\right)$ always has the form 2^{a} or $2^{a} p$ for some integer $a \geq 1$ and odd prime p.

Prime factorization of $\operatorname{rep}\left(K_{1, n}\right)$

Based on calculations using MAGMA:
Conjecture
$\operatorname{rep}\left(K_{1, n}\right)$ always has the form 2^{a} or $2^{a} p$ for some integer $a \geq 1$ and odd prime p.

Theorem

For n sufficiently large, $\operatorname{rep}\left(K_{1, n}\right)$ takes one the forms

$$
2^{a}, 2^{a} p, 2^{a} p q
$$

where $a \geq 1$ and p, q are odd primes.

Sketch of Proof

- The key ingredient is a result of Ingham (1937) that for sufficiently large n there is always a prime in ($n, n+n^{2 / 3}$).

Sketch of Proof

- The key ingredient is a result of Ingham (1937) that for sufficiently large n there is always a prime in $\left(n, n+n^{2 / 3}\right)$.
- The idea is to argue that if $r=\operatorname{rep}\left(K_{1, n}\right)$ has at least three odd prime divisors, then there is a prime $q \in\left(\phi(r), \frac{r}{2}\right)$. Then $2 q<r$, but $\phi(2 q)=q-1 \geq \phi(r) \geq n$, a contradiction.
(Recall: $r=\min \{k: 2 \mid k, \phi(k) \geq n\}$.)

Lingering questions

- How large is "sufficiently large"?

Lingering questions

- How large is "sufficiently large"?

Very large indeed: $n>e^{e^{45}}$.

Lingering questions

- How large is "sufficiently large"?

Very large indeed: $n>e^{e^{45}}$.

- Can we somehow eliminate the case $r=2^{a} p q$?

Lingering questions

- How large is "sufficiently large"?

Very large indeed: $n>e^{e^{45}}$.

- Can we somehow eliminate the case $r=2^{a} p q$?

If one can prove that for sufficiently large n, there is a prime in ($n, n+n^{1 / 2}$), then we can eliminate this case - but there doesn't seem to be enough reason to believe this!

Complete Bipartite Graphs

Next, consider the complete bipartite graph $K_{m, n}$ with bipartition $(A, B),|A|=m,|B|=n$. Let $N=m+n$.

Complete Bipartite Graphs

Next, consider the complete bipartite graph $K_{m, n}$ with bipartition $(A, B),|A|=m,|B|=n$. Let $N=m+n$.

Proposition

- When $N \geq 640, \operatorname{rep}\left(K_{m, n}\right)$ is always divisible by 2 or 3 .
- More precisely, $\operatorname{rep}\left(K_{m, n}\right)$ is either $2^{a}, 3^{a}$ or $2^{a} t$, where $a \geq 1$ and t is odd. In the last case, $\operatorname{rep}\left(K_{m, n}\right) \geq 2 N$.

Idea of Proof:"Label Wastage"

If $r=\operatorname{rep}\left(K_{m, n}\right)=2^{a} t$, where t is odd, then in an optimal labeling by coordinate pairs in $\mathbb{Z}_{2^{a}} \times \mathbb{Z}_{t}$:

- All labels on vertices in A take the form $(o d d, *)$
- All labels on vertices in B take the form (even, *).

Idea of Proof: "Label Wastage"

If $r=\operatorname{rep}\left(K_{m, n}\right)=2^{a} t$, where t is odd, then in an optimal labeling by coordinate pairs in $\mathbb{Z}_{2^{a}} \times \mathbb{Z}_{t}$:

- All labels on vertices in A take the form $(o d d, *)$
- All labels on vertices in B take the form (even, $*$).

Now if (x, y) is any label used on a vertex, $(x+1, y)$ cannot be used as a label anywhere else.

Idea of Proof: "Label Wastage"

If $r=\operatorname{rep}\left(K_{m, n}\right)=2^{a} t$, where t is odd, then in an optimal labeling by coordinate pairs in $\mathbb{Z}_{2^{a}} \times \mathbb{Z}_{t}$:

- All labels on vertices in A take the form $(o d d, *)$
- All labels on vertices in B take the form (even, *).

Now if (x, y) is any label used on a vertex, $(x+1, y)$ cannot be used as a label anywhere else.

Thus, the total number of "available" labels is at least $2 N$, i.e. $r \geq 2 N$.

Bounds for rep $\left(K_{m, n}\right)$

Bounds for $\operatorname{rep}\left(K_{m, n}\right)$

- For an integer $k>0$, we define the radical of k to be the product of the distinct primes dividing k.

Bounds for rep $\left(K_{m, n}\right)$

- For an integer $k>0$, we define the radical of k to be the product of the distinct primes dividing k.
- Define

$$
\psi(k)=\phi(k)+\frac{k}{\operatorname{rad} k}=k\left[\prod_{p \mid k} \frac{1}{p}+\prod_{p \mid k}\left(1-\frac{1}{p}\right)\right]
$$

Bounds for $\operatorname{rep}\left(K_{m, n}\right)$

- For an integer $k>0$, we define the radical of k to be the product of the distinct primes dividing k.
- Define

$$
\psi(k)=\phi(k)+\frac{k}{\operatorname{rad} k}=k\left[\prod_{p \mid k} \frac{1}{p}+\prod_{p \mid k}\left(1-\frac{1}{p}\right)\right]
$$

Theorem

$$
\min \{k: \psi(k) \geq N\} \leq \operatorname{rep}\left(K_{m, n}\right) \leq \min \{k: 2 \mid k, \phi(k) \geq N\}
$$

Both bounds are sharp.

The equipartite case

Proposition

$$
\operatorname{rep}\left(K_{n, n}\right)=\min \left\{r: r \geq 2 n, r=2^{a} \text { or } r=3^{b}\right\}
$$

Preliminaries
Stars
Complete Bipartite Graphs Complete Multipartite Graphs

Prime factorization of $\operatorname{rep}\left(K_{m, n}\right)$

Prime factorization of $\operatorname{rep}\left(K_{m, n}\right)$

Theorem

For n sufficiently large, $\operatorname{rep}\left(K_{1, n}\right)$ takes one the forms

$$
2^{a}, 3^{a}, 2^{a} p^{b}, 2^{a} p q
$$

where $a \geq 1$ and p, q are distinct odd primes.

Prime factorization of $\operatorname{rep}\left(K_{m, n}\right)$

Theorem

For n sufficiently large, $\operatorname{rep}\left(K_{1, n}\right)$ takes one the forms

$$
2^{a}, 3^{a}, 2^{a} p^{b}, 2^{a} p q
$$

where $a \geq 1$ and p, q are distinct odd primes.

- One can construct examples of each of the first three types, but not of the fourth.

Prime factorization of $\operatorname{rep}\left(K_{m, n}\right)$

Theorem

For n sufficiently large, rep $\left(K_{1, n}\right)$ takes one the forms

$$
2^{a}, 3^{a}, 2^{a} p^{b}, 2^{a} p q
$$

where $a \geq 1$ and p, q are distinct odd primes.

- One can construct examples of each of the first three types, but not of the fourth.
- The proof is similar in spirit to that for stars (use Ingham, work with ψ instead of ϕ), but much more technical.

Complete Multipartite Graphs

Finally we consider the complete multipartite graph $G=K_{n_{1}, \ldots, n_{t}}$ with partite sets A_{1}, \ldots, A_{t} of respective sizes $\left|A_{i}\right|=n_{i}$; assume $n_{1} \leq \ldots \leq n_{t}$ and let $N=\sum_{i=1}^{t} n_{i}$.

Complete Multipartite Graphs

Finally we consider the complete multipartite graph $G=K_{n_{1}, \ldots, n_{t}}$ with partite sets A_{1}, \ldots, A_{t} of respective sizes $\left|A_{i}\right|=n_{i}$; assume $n_{1} \leq \ldots \leq n_{t}$ and let $N=\sum_{i=1}^{t} n_{i}$.

Additional complications:

- t may not be prime
- Even if t is prime, there is no guarantee that in a representation of G, all elements in a given partite set will be congruent to each other modulo the same prime divisor of rep (G).

Basic bounds

Proposition

Let ℓ be the smallest prime $\geq t, p$ the smallest prime $\geq N$ and q the smallest prime divisor of $\operatorname{rep}(G)$. Then

$$
\ell \leq q \leq \ell^{2} \text { and } q n_{t} \leq r e p(G) \leq \ell p
$$

Coherent labelings

Fortunately, some of the framework from the bipartite case may be salvaged:

Lemma

(Coherent labeling lemma) Let $f: V(G) \rightarrow\{0,1, \ldots, r-1\}$ be a representation of (a complete multipartite graph) G modulo r.
Then there exists a coherent representation modulo r, i.e. a representation $\tilde{f}: V(G) \rightarrow\{0,1, \ldots, r-1\}$ such that for each i, $1 \leq i \leq t$, there exists a prime divisor p_{i} of r such that

$$
\tilde{f}(u) \equiv \tilde{f}(v)\left(\bmod p_{i}\right)
$$

for all $u, v \in A_{i}$.

Prime Factorization of $\operatorname{rep}\left(K_{n_{1}, \ldots, n_{t}}\right)$

Theorem

Let G be a complete t-partite graph, where $t \geq 2$. When $|V(G)|$ is sufficiently large, $\operatorname{rep}(G)$ takes one of the following forms:

$$
p^{a}, p^{a} q^{b}, p^{a} q^{b} u
$$

where p, q and u are primes with $p<q<u$ and $a, b \geq 1$.

Prime Factorization of $\operatorname{rep}\left(K_{n_{1}, \ldots, n_{t}}\right)$

Theorem

Let G be a complete t-partite graph, where $t \geq 2$. When $|V(G)|$ is sufficiently large, $\operatorname{rep}(G)$ takes one of the following forms:

$$
p^{a}, p^{a} q^{b}, p^{a} q^{b} u
$$

where p, q and u are primes with $p<q<u$ and $a, b \geq 1$.

- The proof hinges on Ingham's result.

Prime Factorization of $\operatorname{rep}\left(K_{n_{1}, \ldots, n_{t}}\right)$

Theorem

Let G be a complete t-partite graph, where $t \geq 2$. When $|V(G)|$ is sufficiently large, $\operatorname{rep}(G)$ takes one of the following forms:

$$
p^{a}, p^{a} q^{b}, p^{a} q^{b} u
$$

where p, q and u are primes with $p<q<u$ and $a, b \geq 1$.

- The proof hinges on Ingham's result.
- One can't use nice functions like ϕ or ψ, so one needs to rely on "label wastage" arguments.

References

- R. Akhtar, A. B. Evans, and D. Pritikin. Representation Numbers of Stars. Integers 10 (2010), 733-745.
- R. Akhtar, A. B. Evans, and D. Pritikin. Representation Numbers of Complete Multipartite Graphs, Discrete Mathematics 3112 (2012), 1158-1165.

References

- R. Akhtar, A. B. Evans, and D. Pritikin. Representation Numbers of Stars. Integers 10 (2010), 733-745.
- R. Akhtar, A. B. Evans, and D. Pritikin. Representation Numbers of Complete Multipartite Graphs, Discrete Mathematics 3112 (2012), 1158-1165.

Questions?

