Vector Space Secret Sharing Scheme

Mustafa Atici

Western Kentucky University Department of Mathematics and Computer Science

52 MIGHTY Conference, Indiana State University, Terre Haute IN. April 27-28, 2012

1. Security in cryptography is based on the secret key K.

2. In private-key cryptography, some time it is not secure to give secret key to an individual(participant).

3. Therefore secret sharing scheme was introduced to share secret key *K* among authorized group of participants.

Secret sharing scheme works as follows: Let $\mathcal{P} = \{P_1, P_2, ..., P_n\}$ be set of all participants.

STEP 1: Determine authorized group

STEP 2: Secure and public information are given to all participants for secret key K.

STEP 3: When authorized group of participants pool their share, then they will recover the secret key K.

STEP 4: If one or more participants are missing from the group, then remaining members of the authorized group cannot determine the secret key K.

Example: Time magazine(May 4, 1992)

Russian nuclear ignition key

 $\mathcal{P} = \{ \text{Boris Yeltsin, Yevgeni Shaposhnikov, Defence Ministry} \}$

Authorized group $B \subset \mathcal{P}$ such that |B| = 2.

Some of the well-known secret sharing schemes are:

1) The Shamir Threshold Scheme (also Blakley)

2) The Monotone Circuit Construction

3) Brickell Vector Space Construction

Let $\mathcal{P} = \{P_i, P_2, ..., P_n\}$ be set of participants and $\Gamma = \{B_1, B_2, ..., B_k\}$ be an access structure on \mathcal{P} .

Let p be large enough prime number and $d \ge 2$ be an integer number.

Suppose there exist a function $\phi : \mathcal{P} \longrightarrow (\mathcal{Z}_p)^d$ with the following property:

$$(1,0,...,0) = \langle \phi(P_i) : P_i \in B \rangle \Leftrightarrow B \in \Gamma = \{B_1,...,B_k\}.$$
(1)

Algorithm I: Vector Space Sharing Scheme (Due to Brickell) **Input:** access structure Γ and ϕ function satisfying (1) **Initial Phase:** 1) for 1 < i < nD gives public share $\phi(P_i) \in (\mathcal{Z}_p)^d$ to P_i 2) Share Computation: 3) D chooses secret key $K \in \mathbb{Z}_p$ 4) D secretly chooses $a_2, a_3, ..., a_d \in \mathcal{Z}_p$ and forms vector $\mathbf{a} = (K, a_2, a_3, ..., a_d)$ 5) for i = 1 to n6) *D* computes $y_i = \mathbf{a}.\phi(P_i)$ 7) D gives secret share y_i to P_i

Brickel Vector Space Construction

Example: Let $\mathcal{P} = \{P_1, P_2, P_3, P_4\}$ be set of participants and $\Gamma = \{B_1, B_2\} = \{\{P_1, P_2, P_3\}, \{P_1, P_4\}\}$ be access structure. By trial and error we can find the following ϕ function, where $d = 3, p \ge 3$:

$$\begin{aligned} \phi(P_1) &= (0, 1, 0) \\ \phi(P_2) &= (1, 0, 1) \\ \phi(P_3) &= (0, 1, -1) \\ \phi(P_4) &= (1, 1, 0) \end{aligned}$$

 $(1,0,0) = \phi(P_2) - \phi(P_1) + \phi(P_3)$, where $B_1 = \{P_1, P_2, P_3\} \in \Gamma$

 $(1,0,0) = \phi(P_4) - \phi(P_1)$, where $B_2 = \{P_1, P_4\} \in \Gamma$

No other subset of \mathcal{P} which does not contain B_1 or B_2 cannot create (1,0,0)

Brickel Vector Space Construction

We will represent ϕ as a mmatrix

$$\phi = \begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{matrix}$$

Algorithm I is very efficient algorithm but requirement of existence of function ϕ is the only drawback

There is no known efficient algorithm to construct such function ϕ for any given access structure Γ

Stinson indicated in his book that trail and error(brute force search) is the only way to find it

For large parameters n, p, d exhausted search is time consuming

Even if construction of such function ϕ is not very easy for every access structure

There is very elegant algorithm to construct a ϕ function for one particular access structure.

Let G = (V, E) be a complete multipartite graph

Then define participant set $\mathcal{P} = V$ and access structure $\Gamma = E$

Construction of ϕ function for the vector space secret sharing is very easy(based on theorem in Stinson)

ϕ Functions for Special Access Structures

Example: Complete bipartite graph G = (V, E) $V = \{P_1, P_2, P_3, P_4, P_5\}$ and $E = \{\{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5\}, \{P_2, P_3\}, \{P_2, P_4\}, \{P_2, P_5\}\}$ $\mathcal{P} = V, \Gamma = E$, and $V(G) = V_1 \cup V_2 = \{P_1, P_2\} \cup \{P_3, P_4, P_5\}.$

Pick two $x_1 = 1, x_2 = 2$, of $(\mathcal{Z}_p)^2$, where $p \ge 2$ and function as follows:

	<i>x</i> ₁	1		1	1
	<i>x</i> ₁	1		1	1
$\phi =$	<i>x</i> ₂	1	=	2	1
	<i>x</i> ₂	1	ĺ	2	1
	<i>x</i> ₂	1]	2	1

Algorithm II: Construction of ϕ for multipartite graph

Input: Complete multipartite graph $G = (\mathcal{P}, \Gamma)$

1) determine disjoint partitions of $V(G) = \bigcup_{i=1}^{k} V_i$ 2) choose distinct $x_i \in \mathcal{Z}_p$ for i = 1, 2, ..., k, where $p \ge k$ 3) for j = 1 to $|\mathcal{P}|$ 4) if $P_j \in V_i$, for some i5) define $\phi(P_j) = (x_i, 1)$ 6) return ϕ Let G = (V, E) a multipartite graph but not <u>complete</u>

 $\mathcal{P} = V$ and $\Gamma = E$ such that

 $\Gamma = \{B_1, B_2, ..., B_m\}$ has the following properties:

1) $B_i \cap B_j = \emptyset$ for all $i \neq j$

2) $|B_i| = k$ for i = 1, 2, ..., m

→ □ → → □ →

Example: G = (V, E) with $V = \{1, 4\} \cup \{2, 5\} \cup \{3, 6\}$ and $E = \{(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6)\}$

 $\mathcal{P} = V = \{1, 2, 3, 4, 5, 6\}$ and $\Gamma = \{B_1, B_2\} = \{\{1, 2, 3\}, \{4, 5, 6\}\}$

 $|B_i| = k = 3$ so d = 2k - 1 = 6 - 1 = 5, and let us take p = 5First construct A_1 and A_2 for $B_1 = \{1, 2, 3\}$ and $B_2 = \{4, 5, 6\}$, respectively

Then ϕ is

$$\phi = \boxed{\begin{array}{c|cccc} A_1 \\ A_2 \end{array}} = \boxed{\begin{array}{c|ccccc} 1 & 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 0 & 2 \\ \hline 1 & 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 3 & 3 \\ \hline 0 & 0 & 1 & 0 & 3 \end{array}}$$

э

Algorithm III: Construction of
$$\phi$$

Input: $\mathcal{P} = \{P_1, P_2, ..., P_n\}, \Gamma = \{B_1, B_2, ..., B_m\},$
where $B_i \cap B_j = \emptyset$ for all $i \neq j$ and $|B_i| = k$
1) pick $x_i \in \mathcal{Z}_p$ such that $1 < x_1 < x_2 < ... < x_m$
2) for $s = 1$ to m
3) construct $A_s = (a_{ij})_{k \times 2k-1}$ with all 0 entries
4) for $i = 1$ to k
5) $a_{ii} = 1$
6) for $i = 1$ to $k - 1$
7) $a_{i(i+1)} = 1$
8) for $i = 1$ to $k - 1$
9) $a_{i(k+i)} = x_s$
10) for $i = 2$ to k
11) $a_{i(k+i-1)} = x_s$
12) return $\phi = \boxed{ \begin{array}{c} A_1 \\ A_2 \\ ... \\ A_m \end{array} }$

æ

1	2	3	4	 k-1	k	k+1	k+2	k+3		2k-1
1	1	0	0	 0	0	Xi	0	0		0
0	1	1	0	 0	0	xi	xi	0		0
0	0	1	1	 0	0	0	xi	xi		0
0	0	0	0	 1	1	0	0		xi	xi
0	0	0	0	 0	1	0	0		0	Xi

Matrix A_i constructed by Algorithm III will be like

- **→** → **→**

э

Properties of block A_i :

- 1. The first column has unique 1.
- 2. Columns 2 through k have exactly two 1's.
- 3. Columns k + 1 through 2k 1 have exactly two x_i 's.

Lemma

Let $B_i = \{P_{i_1}, P_{i_2}, ..., P_{i_k}\}$ be an authorized set. Assume A_i is created by **Algorithm III** for B_i . Then (1, 0, 0, ..., 0) can be written as linear combination of shares, i.e. rows of A_i , of B_i but if one or more rows of A_i is missing, then (1, 0, 0, ..., 0) cannot be written as linear combination of remaining rows of A_i .

Proof.

Let a_i be j - th row of A_i . Then $(1, 0, 0, ..., 0) = (a_1 + a_3 + ...) - (a_2 + a_4 + ...)$ by properties of A_i Now let $C = \{P_{i_i}, P_{i_i}, ..., P_{i_i}\} \subset B_i$. Without loose of generality we can assume that $i_{j_1} < i_{j_2} < \ldots < i_{j_{l_1}}$. If $i_{i_i} \neq 1$, then it is obvious that (1, 0, 0, ..., 0) cannot be linear combination of these rows. Hence $P_{i_1} = P_1$. Since C is unauthorized, there is at least one participant $P_{i_{i_e}}$ which is not in C. Let s be the smallest index such that $P_{i_i} \notin C$ Let $a_1, a_2, \ldots, a_l \in \mathcal{Z}_p$ Suppose: $(1,0,0,...,0) = a_1(1,1,...,x_i,0,...,0) + \sum_{r=2}^{l} a_r \phi(P_{i_r}) \Leftrightarrow$ $a_1 = 1, a_1 + a_2 = 0, \dots, a_{s-2} + a_{s-1} = 0, a_{s-1} = 0, \dots$ where $s \ge 2$. Since $a_1 = 1$, then $a_2 = -1(p - 1 \text{ in } \mathbb{Z}_p)$ so on, hence we get $a_{s-1} = 1$ (or -1 based on even or odd s value) contradiction with $a_{s-1} = 0.$

Theorem

Let $\mathcal{P} = \{P_1, P_2, ..., P_n\}$ be set of participants. Access structure $\Gamma = \{B_1, B_2, ..., B_m\}$ is given where $B_i \cap B_j = \emptyset$ for all $i \neq j$ and $|B_i| = k$ for i = 1, 2, ..., m. Then the function ϕ , which is constructed by **Algorithm III**, satisfies (1).

Proof.

Let $C = \{P_{j_1}, P_{j_2}, ..., P_{j_l}\} \subset \mathcal{P}$. If *C* is an authorized set, then $B_i \subset C$ for some *i*. Hence by previous lemma we are done. If *C* is not authorized set, then we have the following cases: Case 1: If |C| = l < kCase 2: If |C| = l = kCase 3: If |C| = l > k