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Introduction

1. Security in cryptography is based on the secret key K.

2. In private-key cryptography, some time it is not secure to give
secret key to an individual(participant).

3. Therefore secret sharing scheme was introduced to share
secret key K among authorized group of participants.
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Secret Sharing Scheme

Secret sharing scheme works as follows: Let P = {P1,P2, ...,Pn}
be set of all participants.

STEP 1: Determine authorized group

STEP 2: Secure and public information are given to all
participants for secret key K .

STEP 3: When authorized group of participants pool their share,
then they will recover the secret key K .

STEP 4: If one or more participants are missing from the group,
then remaining members of the authorized group cannot determine
the secret key K.
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Secret Sharing Scheme

Example: Time magazine(May 4, 1992)

Russian nuclear ignition key

P = {Boris Yeltsin, Yevgeni Shaposhnikov, Defence Ministry}

Authorized group B ⊂ P such that |B| = 2.
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Basic Secret Sharing Schemes

Some of the well-known secret sharing schemes are:

1) The Shamir Threshold Scheme (also Blakley)

2) The Monotone Circuit Construction

3) Brickell Vector Space Construction
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Brickel Vector Space Construction

Let P = {Pi ,P2, ...,Pn} be set of participants and
Γ = {B1,B2, ...,Bk} be an access structure on P.

Let p be large enough prime number and d ≥ 2 be an integer
number.

Suppose there exist a function φ : P −→ (Zp)d with the following
property:

(1, 0, ..., 0) =< φ(Pi ) : Pi ∈ B > ⇔ B ∈ Γ = {B1, ...,Bk}. (1)
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Brickel Vector Space Construction

Algorithm I: Vector Space Sharing Scheme
(Due to Brickell)
Input: access structure Γ and φ function satisfying (1)
Initial Phase:
1) for 1 ≤ i ≤ n
2) D gives public share φ(Pi ) ∈ (Zp)d to Pi

Share Computation:
3) D chooses secret key K ∈ Zp

4) D secretly chooses a2, a3, ..., ad ∈ Zp and forms vector
a = (K , a2, a3, ..., ad)

5) for i = 1 to n
6) D computes yi = a.φ(Pi )
7) D gives secret share yi to Pi
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Brickel Vector Space Construction

Example: Let P = {P1,P2,P3,P4} be set of participants and
Γ = {B1,B2} = {{P1,P2,P3}, {P1,P4}} be access structure. By
trial and error we can find the following φ function, where
d = 3, p ≥ 3:

φ(P1) = (0, 1, 0)
φ(P2) = (1, 0, 1)
φ(P3) = (0, 1,−1)
φ(P4) = (1, 1, 0)

(1, 0, 0) = φ(P2)− φ(P1) + φ(P3), where B1 = {P1,P2,P3} ∈ Γ

(1, 0, 0) = φ(P4)− φ(P1), where B2 = {P1,P4} ∈ Γ

No other subset of P which does not contain B1 or B2 cannot
create (1, 0, 0)
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Brickel Vector Space Construction

We will represent φ as a mmatrix

φ =

0 1 0

1 0 1

0 1 -1

1 1 0

Algorithm I is very efficient algorithm but requirement of
existence of function φ is the only drawback

There is no known efficient algorithm to construct such function φ
for any given access structure Γ

Stinson indicated in his book that trail and error(brute force
search) is the only way to find it

For large parameters n, p, d exhausted search is time consuming
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φ Functions for Special Access Structures

Even if construction of such function φ is not very easy for every
access structure

There is very elegant algorithm to construct a φ function for one
particular access structure.

Let G = (V ,E ) be a complete multipartite graph

Then define participant set P = V and access structure Γ = E

Construction of φ function for the vector space secret sharing is
very easy(based on theorem in Stinson)
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φ Functions for Special Access Structures

Example: Complete bipartite graph G = (V ,E )
V = {P1,P2,P3,P4,P5} and
E = {{P1,P3}, {P1,P4}, {P1,P5}, {P2,P3}, {P2,P4}, {P2,P5}}
P = V , Γ = E , and V (G ) = V1 ∪ V2 = {P1,P2} ∪ {P3,P4,P5}.

Pick two x1 = 1, x2 = 2, of (Zp)2, where p ≥ 2 and function as
follows:

φ =

x1 1

x1 1

x2 1

x2 1

x2 1

=

1 1

1 1

2 1

2 1

2 1
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φ Functions for Special Access Structures

Algorithm II: Construction of φ for multipartite graph

Input: Complete multipartite graph G = (P, Γ)

1) determine disjoint partitions of V (G ) = ∪ki=1Vi

2) choose distinct xi ∈ Zp for i = 1, 2, ..., k , where p ≥ k
3) for j = 1 to |P|
4) if Pj ∈ Vi , for some i
5) define φ(Pj) = (xi , 1)
6) return φ
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Special Access Structure I

Let G = (V ,E ) a multipartite graph but not complete

P = V and Γ = E such that

Γ = {B1,B2, ...,Bm} has the following properties:

1) Bi ∩ Bj = ∅ for all i 6= j

2) |Bi | = k for i = 1, 2, ...,m
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Special Access Structure I

Example: G = (V ,E ) with V = {1, 4} ∪ {2, 5} ∪ {3, 6} and
E = {(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6)}

P = V = {1, 2, 3, 4, 5, 6} and Γ = {B1,B2} = {{1, 2, 3}, {4, 5, 6}}

Mustafa Atici Secret Sharing Scheme



|Bi | = k = 3 so d = 2k − 1 = 6− 1 = 5, and let us take p = 5
First construct A1 and A2 for B1 = {1, 2, 3} and B2 = {4, 5, 6},
respectively

A1 =

1 1 0 2 0

0 1 1 2 2

0 0 1 0 2

A2 =

1 1 0 3 0

0 1 1 3 3

0 0 1 0 3

Then φ is

φ =
A1

A2
=

1 1 0 2 0

0 1 1 2 2

0 0 1 0 2

1 1 0 3 0

0 1 1 3 3

0 0 1 0 3
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Algorithm III: Construction of φ
Input: P = {P1,P2, ...,Pn}, Γ = {B1,B2, ...,Bm},

where Bi ∩ Bj = ∅ for all i 6= j and |Bi | = k
1) pick xi ∈ Zp such that 1 < x1 < x2 < ... < xm
2) for s = 1 to m
3) construct As = (aij)k×2k−1 with all 0 entries
4) for i = 1 to k
5) aii = 1
6) for i = 1 to k − 1
7) ai(i+1) = 1
8) for i = 1 to k − 1
9) ai(k+i) = xs
10) for i = 2 to k
11) ai(k+i−1) = xs

12) return φ =

A1

A2

...

Am
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Matrix Ai constructed by Algorithm III will be like

1 2 3 4 .. k-1 k k+1 k+2 k+3 .. 2k-1

1 1 0 0 .. 0 0 xi 0 0 .. 0

0 1 1 0 .. 0 0 xi xi 0 .. 0

0 0 1 1 .. 0 0 0 xi xi .. 0

.. .. .. .. .. .. .. .. .. .. .. ..

0 0 0 0 .. 1 1 0 0 .. xi xi
0 0 0 0 .. 0 1 0 0 .. 0 xi
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Properties of block Ai :
1. The first column has unique 1.
2. Columns 2 through k have exactly two 1’s.
3. Columns k + 1 through 2k − 1 have exactly two xi ’s.

Lemma

Let Bi = {Pi1 ,Pi2 , ...,Pik} be an authorized set. Assume Ai is
created by Algorithm III for Bi . Then (1, 0, 0, ..., 0) can be
written as linear combination of shares, i.e. rows of Ai , of Bi but if
one or more rows of Ai is missing, then (1, 0, 0, ..., 0) cannot be
written as linear combination of remaining rows of Ai .
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Proof.

Let aj be j − th row of Ai . Then
(1, 0, 0, ..., 0) = (a1 + a3 + ...)− (a2 + a4 + ...) by properties of Ai

Now let C = {Pij1
,Pij2

, ...,Pijl
} ⊂ Bi . Without loose of generality

we can assume that ij1 < ij2 < ... < ijl .
If iji 6= 1, then it is obvious that (1, 0, 0, ..., 0) cannot be linear
combination of these rows. Hence Pij1

= P1.
Since C is unauthorized, there is at least one participant Pijs

which
is not in C . Let s be the smallest index such that Pijs

6∈ C
Let a1, a2, ..., al ∈ Zp

Suppose:
(1, 0, 0, ..., 0) = a1(1, 1, ..., xi , 0, ..., 0) +

∑l
r=2 arφ(Pijr

) ⇔
a1 = 1, a1 + a2 = 0, ...., as−2 + as−1 = 0, as−1 = 0, ... where s ≥ 2.
Since a1 = 1, then a2 = −1(p − 1 in Zp) so on, hence we get
as−1 = 1 (or −1 based on even or odd s value) contradiction with
as−1 = 0.
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Theorem

Let P = {P1,P2, ...,Pn} be set of participants. Access structure
Γ = {B1,B2, ...,
Bm} is given where Bi ∩ Bj = ∅ for all i 6= j and |Bi | = k for
i = 1, 2, ...,m. Then the function φ, which is constructed by
Algorithm III, satisfies (1).
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Proof.

Let C = {Pj1 ,Pj2 , ...,Pjl} ⊂ P. If C is an authorized set, then
Bi ⊂ C for some i . Hence by previous lemma we are done.
If C is not authorized set, then we have the following cases:
Case 1: If |C | = l < k
Case 2: If |C | = l = k
Case 3: If |C | = l > k
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