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Basic Definitions

Definition

A subgroup G of the symmetric group SX on the set X is transitive if
whenever x , y ∈ X , then there exists g ∈ G such that g(x) = y.

A graph
Γ is vertex-transitive if its automorphism group Aut(Γ) is transitive on
V (Γ), the vertex set of Γ.

Intuitively, a graph is vertex-transitive if there is no structural (i.e.
non-labeling) way to distinguish vertices of the graph.
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Figure : The 2-subset labeling of the Petersen graph

Here the vertices of the Petersen graph P are labeled with 2-element
subsets of {1, 2, 3, 4, 5} and two vertices are adjacent if and only if their
intersection is empty.

This is the Kowaleski labeling (1917) or the Kneser
graph labeling (1955). It is easy to see that S5 is contained in Aut(P),
and so P is vertex-transitive. In fact, Aut(P) = S5.
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Figure : The Heawood graph labeled with the lines and hyperplanes of F3
2

Form a bipartite graph with bipartition sets the lines of F3
2 and the

hyperplanes of F3
2.

A line is adjacent to a hyperplane if and only if the
hyperplane contains the line. The graph is the Heawood graph.

Ted Dobson Vertex-transitive graphs



•〈(0, 0, 1)〉

•〈(1, 0, 0)〉

•〈(1, 1, 1)〉

•〈(1, 1, 0)〉

•〈(0, 1, 0)〉

•〈(1, 0, 1)〉

•〈(0, 1, 1)〉

•〈(1, 1, 1)〉⊥

•〈(1, 0, 0)〉⊥

•〈(0, 1, 0)〉⊥

•〈(0, 1, 1)〉⊥

•〈(1, 1, 0)〉⊥

•〈(0, 0, 1)〉⊥

•〈(1, 0, 1)〉⊥

ZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZ

���������������������������������

TTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

oooooooooooooooooooooooooo

oooooooooooooooooooooooooo

oooooooooooooooooooooooooo

oooooooooooooooooooooooooo

Figure : The Heawood graph labeled with the lines and hyperplanes of F3
2

Form a bipartite graph with bipartition sets the lines of F3
2 and the

hyperplanes of F3
2. A line is adjacent to a hyperplane if and only if the

hyperplane contains the line.

The graph is the Heawood graph.

Ted Dobson Vertex-transitive graphs



•〈(0, 0, 1)〉

•〈(1, 0, 0)〉

•〈(1, 1, 1)〉

•〈(1, 1, 0)〉

•〈(0, 1, 0)〉

•〈(1, 0, 1)〉

•〈(0, 1, 1)〉

•〈(1, 1, 1)〉⊥

•〈(1, 0, 0)〉⊥

•〈(0, 1, 0)〉⊥

•〈(0, 1, 1)〉⊥

•〈(1, 1, 0)〉⊥

•〈(0, 0, 1)〉⊥

•〈(1, 0, 1)〉⊥

ZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZ

���������������������������������

TTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

oooooooooooooooooooooooooo

oooooooooooooooooooooooooo

oooooooooooooooooooooooooo

oooooooooooooooooooooooooo

Figure : The Heawood graph labeled with the lines and hyperplanes of F3
2

Form a bipartite graph with bipartition sets the lines of F3
2 and the

hyperplanes of F3
2. A line is adjacent to a hyperplane if and only if the

hyperplane contains the line. The graph is the Heawood graph.
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Consider all linear transformations of F3
2 to F3

2 (or matrices if you like)

permuting lines and hyperplanes of F3
2. Such a linear transformation will

take a line contained in a hyperplane to a line contained in a hyperplane,
and so induces an automorphism of the Heawood graph H. Some linear
algebra will also show that the function which maps a subspace to its
orthogonal complement is also an automorphism of H. Thus Aut(H) is
vertex-transitive. These are all of the automorphisms of H, and in group
theory language Aut(H) = Z2 n PΓL(3, 2).
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Definition

A group G ≤ SX is doubly-transitive if whenever (x1, y1), (x2, y2) ∈ X × X
such that x1 6= y1 and x2 6= y2, then there exists g ∈ G such that
g(x1, y1) = (x2, y2).

Note that if Γ is a graph with doubly-transitive automorphism group, then
it is complete or has no edges and so its automorphism group is the
symmetric group.

As in a 3-dimensional vector space there is a linear transformation which
maps any two different one-dimensional subspaces to any other two
different one-dimensional subspaces, there is a subgroup of Aut(H) which
is doubly-transitive on lines (and hyperplanes).
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Cayley graphs

Definition

Let G be a group and S ⊂ G such that 1 6∈ S and S = S−1. Define a
Cayley digraph of G , denoted Cay(G ,S), to be the graph with
V (Cay(G ,S)) = G and E (Cay(G ,S)) = {(g , gs) : g ∈ G , s ∈ S}. We
call S the connection set of Cay(G ,S).
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Figure : The Cayley graph Cay(Z10, {1, 3, 7, 9}).
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For h ∈ G , define hL : G → G by hL(x) = hx .

Then hL(g , gs) = (hg , hgs),
and so hL is an automorphism of a Cayley graph. We set
GL = {hL : h ∈ G} - GL is the left regular representation of G . So
GL ≤ Aut(Cay(G ,S)).

If h, g ∈ G , then (gh−1)L(h) = gh−1h = g . Thus Cayley graphs are
vertex-transitive graphs.

Think of a Cayley graph Cay(G ,S) as being constructed in the following
way. First, the neighbors of a vertex, the identity in G , are specified via S .
The rest of the edges of Cay(G ,S) are then obtained by translating the
neighbors of 1 using elements of GL.
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The Petersen graph is a non-Cayley graph with the fewest number of
vertices.

The Heawood graph turns out to be a Cayley graph of the
dihedral group D7 of order 14.
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Hamilton paths in vertex-transitive graphs

In 1969, Lovász proposed the following problem, usually attributed as a
conjecture:

Problem

Let us construct a finite, connected, undirected graph which is symmetric
and has no simple path containing all elements. A graph is called
symmetric, if for any two vertices x , y it has an automorphism mapping x
into y.

It has also been conjectured that every connected Cayley graph on at least
3 vertices contains a Hamilton cycle, as the only 4 such graphs known are
non-Cayley (the Petersen graph, the Coxeter graph, and graphs obtained
from these by replacing a vertex with a triangle).
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There are many results on this conjecture, and we list some of the most
well-known:

Every connected Cayley digraph of a p-group, p a prime, contains a
directed Hamiltonian cycle (Witte, 1986)

Every vertex-transitive graph of order pq whose automorphism group
does not contain a normal transitive simple group is Hamiltonian with
the exception of the Petersen graph (Marušič (1983), Alspach and
Parsons, (1982))

Cayley graphs of groups whose commutator subgroup is a cyclic
p-group (Keating and Witte (1985))
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Some recent results

Cayley graphs on nilpotent groups with cyclic commutator subgroup
are hamiltonian (Ghaderpour and Witte Morris (2012?))

Odd-order Cayley graphs with commutator subgroup of order pq are
hamiltonian, p and q distinct primes (Witte Morris (2013?)

Cayley graphs of groups of order less than 120 except some groups of
order 72, 96, and 108 (Kutnar, Marušič, Witte Morris, Morris and
Sparl (2012))
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Automorphism groups of vertex-transitive graphs of prime
order

Theorem (Burnside, 1901)

Let G be a transitive group of prime degree p that contains (Zp)L. Then
either G ≤ AGL(1, p) = {x → ax + b : a ∈ Z∗

p, b ∈ Zp} or G is
doubly-transitive.

AGL(1, p) is the normalizer of (Zp)L in Sp.

Recall that a graph with doubly-transitive automorphism group is
necessarily complete or has no edges with automorphism group a
symmetric group. We then have

Corollary

Let Γ be a Cayley graph of Zp, p a prime. Then Aut(Γ) ≤ AGL(1, p) or
Aut(Γ) = Sp.
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Burnside’s Theorem can be generalized!

For example

Theorem (D., 2005)

Let G ≤ Spk be such that every minimal transitive subgroup of G is cyclic

of order pk . Then either G has a normal Sylow p-subgroup or G is
doubly-transitive.

Theorem (D., C.H. Li, P. Spiga, 2012?)

Let G be a transitive group of degree n such that contains the left-regular
representation of some abelian group H. If H is a Hall π-subgroup of G,
then either H is normal in G or G is doubly-transitive. Here π is the set of
divisors of n.

Ted Dobson Vertex-transitive graphs



Burnside’s Theorem can be generalized! For example

Theorem (D., 2005)

Let G ≤ Spk be such that every minimal transitive subgroup of G is cyclic

of order pk . Then either G has a normal Sylow p-subgroup or G is
doubly-transitive.

Theorem (D., C.H. Li, P. Spiga, 2012?)

Let G be a transitive group of degree n such that contains the left-regular
representation of some abelian group H. If H is a Hall π-subgroup of G,
then either H is normal in G or G is doubly-transitive. Here π is the set of
divisors of n.

Ted Dobson Vertex-transitive graphs



Burnside’s Theorem can be generalized! For example

Theorem (D., 2005)

Let G ≤ Spk be such that every minimal transitive subgroup of G is cyclic

of order pk . Then either G has a normal Sylow p-subgroup or G is
doubly-transitive.

Theorem (D., C.H. Li, P. Spiga, 2012?)

Let G be a transitive group of degree n such that contains the left-regular
representation of some abelian group H. If H is a Hall π-subgroup of G,
then either H is normal in G or G is doubly-transitive. Here π is the set of
divisors of n.

Ted Dobson Vertex-transitive graphs



The Isomorphism Problem

Ádám conjectured in 1967 that any two circulant graphs of order n (that
is Cayley graphs of Zn) are isomorphic if and only they are isomorphic by a
group automorphism of Zn.

It is not hard to show that the image of a Cayley graph Cay(G , S) under a
group automorphism of G is the Cayley graph Cay(G , α(S)).
So to test isomorphism between two Cayley graphs of a group G , we must
check whether group automorphisms of G are graph isomorphisms. Thus
Ádám conjectured that for circulant graphs the group automorphisms were
all that need to be checked to determine isomorphism.
Ádám’s conjecture turns out to be false, and eventually Muzychuk
determined all values of n for which Ádám’s conjecture is true:

Theorem (Muzychuk, 1997)

The values of n for which any two ciculant graphs of order n are
isomorphic if and only if they are isomorphic by an automorphism of Zn

are n = m and 4m, where m is square-free, or n = 8, 9, 18.
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Ádám conjectured in 1967 that any two circulant graphs of order n (that
is Cayley graphs of Zn) are isomorphic if and only they are isomorphic by a
group automorphism of Zn.

It is not hard to show that the image of a Cayley graph Cay(G , S) under a
group automorphism of G is the Cayley graph Cay(G , α(S)).
So to test isomorphism between two Cayley graphs of a group G , we must
check whether group automorphisms of G are graph isomorphisms. Thus
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Ádám’s conjecture was generalized into the following question:

Problem

For which groups G is it true that any two Cayley graphs of G are
isomorphic if and only if they are isomorphic by a group automorphism of
G ?

A group G for which the answer to the preceding question is ‘Yes’ is called
a CI-group with respect to graphs. We say “with respect to graphs” as the
same question can be asked of other “combinatorial objects” (and has
been - even in the late 1920’s and early 1930’s for designs). Many papers
have been written on this topic!
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The Main Tool

Essentially every result on the isomorphism problem makes use of the
following result of Babai published in 1977.

A version of this result was
also proven by Alspach and Parsons at the same time, and a version for
designs was proven in the 1920’s!

Lemma

For a group G , the following are equivalent:

G is a CI-group with respect to graphs,

whenever δ ∈ SG and δ−1GLδ ≤ Aut(Cay(G ,S)), then GL and
δ−1GLδ are conjugate in Aut(Cay(G ,S)).

There are more general versions of this lemma for when G is not a
CI-group with respect to graphs, and to when a graph is not a Cayley
graph. All versions essentially say that the isomorphism problem boils
down to the conjugacy classes of GL (or some other appropriate group if
the graph is not Cayley).
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Zp is a CI-group

The first positive result was obtained by Turner at the same time Ádám
made his conjecture!

Theorem (Turner, 1967)

For p a prime, Zp is a CI-group with respect to graphs.

Let δ ∈ Sp such that δ−1(Zp)Lδ ≤ Aut(Cay(Zp,S)). Note that (Zp)L has
order p, and that a Sylow p-subgroup of Sp has order p as |Sp| = p!.
Hence δ−1(Zp)Lδ and (Zp)L are Sylow p-subgroups of Aut(Cay(G ,S))
and so are conjugate by a Sylow Theorem.

This result did not use anything about graphs! ,
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The first book on graph theory written in English was by Oystein Ore in
1962.

Here is the first exercise in that book.

Show that the following two graphs are isomorphic.
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Imprimitive groups

Definition

A subset B ⊂ X is called a block of a transitive permutation group
G ≤ SX if g(B) = B or g(B) ∩ B = ∅ for all g ∈ G . Singleton sets are
always blocks as is X itself - these are trivial blocks. If B is a block of G,
then g(B) is also a block of G , and {g(B) : g ∈ G} is a complete block
system of G . A permutation group with a nontrivial block is an
imprimitive group, and if G is primitive if it has no nontrivial blocks.

The automorphism group of the Petersen graph is primitive, while the
automorphism group of the Heawood graph is imprimitive, with the lines
and hyperplanes of F3

2 forming a complete block system with 2 blocks of
size 7.
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Theorem (O’Nan-Scott Theorem, 1979)

The direct product of all minimal normal subgroups of a primitive group is
a direct product of isomorphic simple groups.

With the Classification of the Finite Simple Groups, there is now a way of
attacking any problem dealing with primitive groups, and much work has
been done on refining such techniques.

An imprimitive group can though of as a combination of two groups of
smaller degree. Namely, one can think of how the imprimitive groups
permute the blocks, as well as how the imprimitive group permutes the
elements within a given block.

Induction! This is the way to go! BUT ...
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permute the blocks, as well as how the imprimitive group permutes the
elements within a given block.

Induction!

This is the way to go! BUT ...
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The Big Problem

With the automorphism group of a graph that is imprimitive,

the two
groups from which the automorphism group is a combination do NOT
have to be automorphism groups of graphs.

For example, the subgroup of the automorphism group of the Heawood
graph that permutes the lines amongst themselves is doubly-transitive but
not a symmetric group.

Ted Dobson Vertex-transitive graphs



The Big Problem

With the automorphism group of a graph that is imprimitive, the two
groups from which the automorphism group is a combination

do NOT
have to be automorphism groups of graphs.

For example, the subgroup of the automorphism group of the Heawood
graph that permutes the lines amongst themselves is doubly-transitive but
not a symmetric group.

Ted Dobson Vertex-transitive graphs



The Big Problem

With the automorphism group of a graph that is imprimitive, the two
groups from which the automorphism group is a combination do NOT
have to be automorphism groups of graphs.

For example, the subgroup of the automorphism group of the Heawood
graph that permutes the lines amongst themselves is doubly-transitive but
not a symmetric group.

Ted Dobson Vertex-transitive graphs



The Big Problem

With the automorphism group of a graph that is imprimitive, the two
groups from which the automorphism group is a combination do NOT
have to be automorphism groups of graphs.

For example,

the subgroup of the automorphism group of the Heawood
graph that permutes the lines amongst themselves is doubly-transitive but
not a symmetric group.

Ted Dobson Vertex-transitive graphs



The Big Problem

With the automorphism group of a graph that is imprimitive, the two
groups from which the automorphism group is a combination do NOT
have to be automorphism groups of graphs.

For example, the subgroup of the automorphism group of the Heawood
graph that permutes the lines amongst themselves

is doubly-transitive but
not a symmetric group.

Ted Dobson Vertex-transitive graphs



The Big Problem

With the automorphism group of a graph that is imprimitive, the two
groups from which the automorphism group is a combination do NOT
have to be automorphism groups of graphs.

For example, the subgroup of the automorphism group of the Heawood
graph that permutes the lines amongst themselves is doubly-transitive but
not a symmetric group.

Ted Dobson Vertex-transitive graphs



THANKS!
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