

Counting independent sets in graphs with a given minimal degree

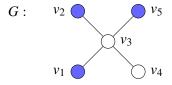
John Engbers* David Galvin

University of Notre Dame Department of Mathematics

April 2012

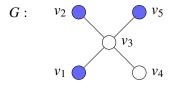
An extremal question

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.



An extremal question

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.

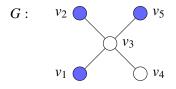


i(G): Total number of independent sets in a graph G.

 $i_t(G)$: Number of independent sets with size t in G ($t \in \{0, 1, ..., n\}$).

An extremal question

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.



i(G): Total number of independent sets in a graph G.

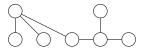
 $i_t(G)$: Number of independent sets with size t in G ($t \in \{0, 1, ..., n\}$).

Question

Given a family of graphs G, what is the maximum value of i(G) and $i_t(G)$ as G ranges over G?

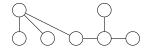
Fixed order, trees

G(n): trees on n vertices



Fixed order, trees

 $\mathcal{G}(n)$: trees on n vertices



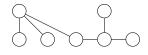
Theorem (Prodinger, Tichy 1982)

For $G \in \mathcal{G}(n)$,

• i(G) maximized by the star $K_{1,n-1}$.

Fixed order, trees

 $\mathcal{G}(n)$: trees on n vertices



Theorem (Prodinger, Tichy 1982)

For $G \in \mathcal{G}(n)$,

• i(G) maximized by the star $K_{1,n-1}$.

Theorem (Wingard 1995)

For $G \in \mathcal{G}(n)$,

• $i_t(G)$ maximized by the star $K_{1,n-1}$ for all t.

Fixed order, fixed number of edges

 $\mathcal{G}(n,m)$: graphs with *n* vertices, *m* edges

Fixed order, fixed number of edges

 $\mathcal{G}(n,m)$: graphs with n vertices, m edges

Theorem (Cutler, Radcliffe 2011)

For $G \in \mathcal{G}(n,m)$,

- i(G) maximized by Lex(n, m)
- $i_t(G)$ maximized by Lex(n, m) for all t.

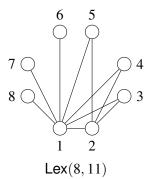
Fixed order, fixed number of edges

 $\mathcal{G}(n,m)$: graphs with n vertices, m edges

Theorem (Cutler, Radcliffe 2011)

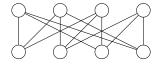
For $G \in \mathcal{G}(n,m)$,

- i(G) maximized by Lex(n, m)
- $i_t(G)$ maximized by Lex(n,m) for all t.



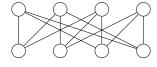
Fixed order, regular of fixed degree

 $\mathcal{G}(n,d)$: graphs with *n* vertices, *d*-regular



Fixed order, regular of fixed degree

 $\mathcal{G}(n,d)$: graphs with n vertices, d-regular



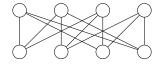
Theorem (Kahn 2001; Zhao 2011)

For $G \in \mathcal{G}(n,d)$,

• i(G) maximized by $\frac{n}{2d}K_{d,d}$, disjoint union of $\frac{n}{2d}$ copies of $K_{d,d}$.

Fixed order, regular of fixed degree

 $\mathcal{G}(n,d)$: graphs with n vertices, d-regular



Theorem (Kahn 2001; Zhao 2011)

For $G \in \mathcal{G}(n,d)$,

• i(G) maximized by $\frac{n}{2d}K_{d,d}$, disjoint union of $\frac{n}{2d}$ copies of $K_{d,d}$.

Conjecture (Kahn 2001)

For $G \in \mathcal{G}(n,d)$,

- $i_t(G)$ maximized by $\frac{n}{2d}K_{d,d}$ for all t.
- Asymptotic evidence for conjecture given by Carroll, G., Tetali (2009)

 $\mathcal{G}(n,\delta)$: n-vertex graphs with minimum degree δ

Intuition: fewer edges implies more independent sets.

 $\mathcal{G}(n,\delta)$: *n*-vertex graphs with minimum degree δ

Intuition: fewer edges implies more independent sets.

Naive Conjecture

i(G), $i_t(G)$ maximized in $\mathcal{G}(n,\delta)$ by disjoint union of $K_{\delta,\delta}$'s

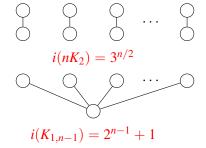
 $\mathcal{G}(n,\delta)$: *n*-vertex graphs with minimum degree δ

Intuition: fewer edges implies more independent sets.

Naive Conjecture

i(G), $i_t(G)$ maximized in $\mathcal{G}(n,\delta)$ by disjoint union of $K_{\delta,\delta}$'s

Wrong! even for $\delta = 1$



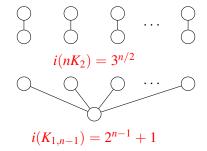
 $\mathcal{G}(n,\delta)$: *n*-vertex graphs with minimum degree δ

Intuition: fewer edges implies more independent sets.

Naive Conjecture

i(G), $i_t(G)$ maximized in $\mathcal{G}(n,\delta)$ by disjoint union of $K_{\delta,\delta}$'s

Wrong! even for $\delta = 1$



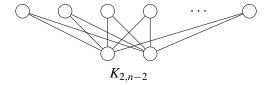
New intuition: Maximize $\alpha(G)$

Fixed order, fixed minimum degree

Theorem (G. 2011)

For $n \geq 4\delta^2$ and $G \in \mathcal{G}(n, \delta)$,

• i(G) uniquely maximized by $K_{\delta,n-\delta}$.

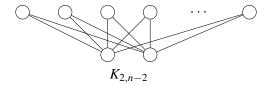


Fixed order, fixed minimum degree

Theorem (G. 2011)

For $n \geq 4\delta^2$ and $G \in \mathcal{G}(n, \delta)$,

• i(G) uniquely maximized by $K_{\delta,n-\delta}$.



Conjecture

For $G \in \mathcal{G}(n, \delta)$,

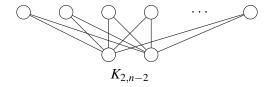
• for $n \geq 2\delta$, i(G) uniquely maximized by $K_{\delta,n-\delta}$

Fixed order, fixed minimum degree

Theorem (G. 2011)

For $n \geq 4\delta^2$ and $G \in \mathcal{G}(n, \delta)$,

• i(G) uniquely maximized by $K_{\delta,n-\delta}$.



Conjecture

For $G \in \mathcal{G}(n, \delta)$,

- for $n \geq 2\delta$, i(G) uniquely maximized by $K_{\delta,n-\delta}$
- for $n < 2\delta$, i(G) uniquely maximized by $K_{n-\delta,n-\delta,\dots,n-\delta,x}$ where $x < n-\delta$.

$\mathcal{G}(n,\delta)$: fixed size independent sets

 $i_2(G) = \binom{n}{2} - |E(G)| \implies$ a regular G (not $K_{\delta,n-\delta}!$) is maximizer

$\mathcal{G}(n, \delta)$: fixed size independent sets

$$i_2(G) = \binom{n}{2} - |E(G)| \implies$$
 a regular G (not $K_{\delta,n-\delta}$!) is maximizer

Conjecture (G. 2011)

For
$$n \geq 2\delta$$
, $t \geq 3$, and $G \in \mathcal{G}(n, \delta)$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta})$$

$\mathcal{G}(n, \delta)$: fixed size independent sets

$$i_2(G) = \binom{n}{2} - |E(G)| \implies$$
 a regular G (not $K_{\delta,n-\delta}$!) is maximizer

Conjecture (G. 2011)

For $n \geq 2\delta$, $t \geq 3$, and $G \in \mathcal{G}(n, \delta)$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta})$$

Progress:

Theorem (Alexander, Cutler, Mink 2011)

Conjecture true for bipartite $G \in \mathcal{G}(n, \delta)$.

$\mathcal{G}(n,\delta)$: fixed size independent sets

$$i_2(G) = \binom{n}{2} - |E(G)| \implies$$
 a regular G (not $K_{\delta,n-\delta}$!) is maximizer

Conjecture (G. 2011)

For $n \geq 2\delta$, $t \geq 3$, and $G \in \mathcal{G}(n, \delta)$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta})$$

Progress:

Theorem (Alexander, Cutler, Mink 2011)

Conjecture true for bipartite $G \in \mathcal{G}(n, \delta)$.

Theorem (E., G. 2012+)

Conjecture true for

- $\delta = 1, 2, 3$
- $\delta > 4$ and $t > 2\delta + 1$

$\mathcal{G}(n,\delta)$: fixed size independent sets

$$i_2(G) = \binom{n}{2} - |E(G)| \implies$$
 a regular G (not $K_{\delta,n-\delta}$!) is maximizer

Conjecture (G. 2011)

For $n \geq 2\delta$, $t \geq 3$, and $G \in \mathcal{G}(n, \delta)$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta})$$

Progress:

Theorem (Alexander, Cutler, Mink 2011)

Conjecture true for bipartite $G \in \mathcal{G}(n, \delta)$.

Theorem (E., G. 2012+)

Conjecture true for

- $\delta = 1, 2, 3$
- $\delta \ge 4$ and $t \ge 2\delta + 1 \longleftrightarrow We'll$ show this today \star

Observation

Suffices to consider $t = 2\delta + 1$.

Observation

Suffices to consider $t = 2\delta + 1$.

Proof: Suppose that for some $t > \delta$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta}) = \binom{n-\delta}{t}.$$

Then

#(ordered independent *t*-sets) $\leq (n - \delta)^t$

Observation

Suffices to consider $t = 2\delta + 1$.

Proof: Suppose that for some $t > \delta$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta}) = \binom{n-\delta}{t}.$$

Then

#(ordered independent *t*-sets) $\leq (n - \delta)^{\underline{t}}$

Ordered (t+1)-set: choose first t, which rules out $t+\delta$ vertices, so:

 $\#(\text{ordered independent } (t+1)\text{-sets}) \le (n-\delta)^{t}(n-(\delta+t)) = (n-\delta)^{t+1}$

Observation

Suffices to consider $t = 2\delta + 1$.

Proof: Suppose that for some $t > \delta$,

$$i_t(G) \le i_t(K_{\delta,n-\delta}) = \binom{n-\delta}{t}.$$

Then

#(ordered independent *t*-sets) $\leq (n - \delta)^{\underline{t}}$

Ordered (t+1)-set: choose first t, which rules out $t+\delta$ vertices, so:

#(ordered independent (t+1)-sets) $\leq (n-\delta)^{\underline{t}}(n-(\delta+t)) = (n-\delta)^{\underline{t+1}}$

therefore

$$i_{t+1}(G) \leq \binom{n-\delta}{t+1} = i_{t+1}(K_{\delta,n-\delta}).$$

Goal: prove $t = 2\delta + 1$ by induction on n.

Base cases: $n \leq 3\delta + 1$ is trivial.

Goal: prove $t = 2\delta + 1$ by induction on n.

Base cases: $n \leq 3\delta + 1$ is trivial.

Goal: prove $t = 2\delta + 1$ by induction on n.

Base cases: $n \leq 3\delta + 1$ is trivial.

$$i_t(G) = i_t(G-v) + i_{t-1}(G-v-N(v))$$

Goal: prove $t = 2\delta + 1$ by induction on n.

Base cases: $n \leq 3\delta + 1$ is trivial.

$$i_t(G) = i_t(G - v) + i_{t-1}(G - v - N(v))$$

$$\leq \binom{(n-1) - \delta}{t} \text{ [induction]} + \binom{n - (\delta + 1)}{t - 1} \text{ [trivial bound]}$$

Goal: prove $t = 2\delta + 1$ by induction on n.

Base cases: $n \leq 3\delta + 1$ is trivial.

$$\begin{array}{lcl} i_t(G) & = & i_t(G-v) + i_{t-1}(G-v-N(v)) \\ \\ & \leq & \binom{(n-1)-\delta}{t} \text{ [induction]} + \binom{n-(\delta+1)}{t-1} \text{ [trivial bound]} \\ \\ & = & \binom{n-\delta}{t}. \end{array}$$

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G - v) = \delta$.

Ordered independent *t*-sets starting with vertex of degree $> \delta$:

$$\#_{>\delta} \le k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

where k is the number of vertices with degree $> \delta$.

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G - v) = \delta$.

Ordered independent *t*-sets starting with vertex of degree $> \delta$:

$$\#_{>\delta} \le k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

where k is the number of vertices with degree $> \delta$.

Ordered independent *t*-sets starting with vertex of degree = δ :

$$#=\delta \leq (n-k)(n-(\delta+1))(n-(\delta+2))\cdots (n-(\delta+1))(n-(2\delta+1))\cdots (n-(\delta+t))$$

Missing term?

ullet Worst case situation: each new choice shares same δ neighbors

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G - v) = \delta$.

Ordered independent *t*-sets starting with vertex of degree $> \delta$:

$$\#_{>\delta} \le k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

where k is the number of vertices with degree $> \delta$.

Ordered independent *t*-sets starting with vertex of degree = δ :

$$#=\delta \leq (n-k)(n-(\delta+1))(n-(\delta+2))\cdots$$
$$(n-(2\delta+1))(n-(2\delta+2))\cdots(n-(\delta+t))$$

Missing term?

- Worst case situation: each new choice shares same δ neighbors
- Can't happen $\delta + 1$ times (or we're in case 1.)

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G - v) = \delta$.

Ordered independent *t*-sets starting with vertex of degree $> \delta$:

$$\#_{>\delta} \le k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

where k is the number of vertices with degree $> \delta$.

Ordered independent *t*-sets starting with vertex of degree $= \delta$:

$$#=\delta \leq (n-k)(n-(\delta+1))(n-(\delta+2))\cdots (n-(\delta+1))(n-(2\delta+1))\cdots (n-(\delta+t))$$

Missing term?

- Worst case situation: each new choice shares same δ neighbors
- Can't happen $\delta + 1$ times (or we're in case 1.)
- $(\delta + 1)$ st choice (at worst) removes a new vertex

Have

$$\#_{>\delta} \le k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

and

$$\#=\delta \le (n-k)(n-(\delta+1))(n-(\delta+2))\cdots (n-(2\delta+1))(n-(2\delta+2))\cdots (n-(\delta+t)).$$

Have

$$\#_{>\delta} \le k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

and

$$\#=\delta \leq (n-k)(n-(\delta+1))(n-(\delta+2))\cdots (n-(2\delta+1))(n-(2\delta+2))\cdots (n-(\delta+t)).$$

Worst case is k = 0:

$$i_t(G) \leq \frac{1}{t!} n(n-(\delta+1))(n-(\delta+2))\cdots$$
$$(n-(2\delta+1))(n-(2\delta+2))\cdots(n-(\delta+t))$$

Have

$$\#_{>\delta} \le k(n-(\delta+2))(n-(\delta+3))\cdots(n-(\delta+t))$$

and

$$\#_{=\delta} \leq (n-k)(n-(\delta+1))(n-(\delta+2))\cdots (n-(2\delta+1))(n-(2\delta+2))\cdots (n-(\delta+t)).$$

Worst case is k = 0:

$$i_{t}(G) \leq \frac{1}{t!} \frac{n(n-(\delta+1))(n-(\delta+2))\cdots}{(n-(2\delta+1))(n-(2\delta+2))\cdots(n-(\delta+t))}$$

$$\leq \frac{1}{t!} \frac{(n-\delta)(n-(\delta+1))\cdots}{(n-(2\delta+1))\cdots(n-(\delta+(t-1)))} \text{ [uses } t=2\delta+1\text{]}$$

$$= \binom{n-\delta}{t}.$$

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]

The result for $\delta = 1, 2, 3$:

- $\delta = 1$ is covered by $t \geq 2\delta + 1$
- $\delta = 2,3$ involves messy case analysis, structural characterization of δ -critical graphs.
- $\delta \geq 4$ seems hard with these methods (still open for $3 \leq t \leq 2\delta$).

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]

The result for $\delta = 1, 2, 3$:

- $\delta = 1$ is covered by $t \ge 2\delta + 1$
- $\delta = 2,3$ involves messy case analysis, structural characterization of δ -critical graphs.
- $\delta \ge 4$ seems hard with these methods (still open for $3 \le t \le 2\delta$).

Question

For $n < 2\delta$, $t \ge 3$ and $G \in \mathcal{G}(n, \delta)$, is $i_t(G)$ maximized by $K_{n-\delta, n-\delta, \dots, n-\delta, x}$, where $x < n - \delta$?

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]

The result for $\delta = 1, 2, 3$:

- $\delta = 1$ is covered by $t \geq 2\delta + 1$
- $\delta = 2,3$ involves messy case analysis, structural characterization of δ -critical graphs.
- $\delta \ge 4$ seems hard with these methods (still open for $3 \le t \le 2\delta$).

Question

For $n < 2\delta$, $t \ge 3$ and $G \in \mathcal{G}(n, \delta)$, is $i_t(G)$ maximized by $K_{n-\delta, n-\delta, \dots, n-\delta, x}$, where $x < n - \delta$?

Thank you!

