

Counting independent sets in graphs with a given minimal degree

John Engbers* David Galvin

University of Notre Dame
Department of Mathematics

April 2012

An extremal question

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.

An extremal question

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.

$i(G)$: Total number of independent sets in a graph G.
$i_{t}(G)$: Number of independent sets with size t in $G(t \in\{0,1, \ldots, n\})$.

An extremal question

Independent set (of vertices): A set of vertices which are pairwise non-adjacent.

$i(G)$: Total number of independent sets in a graph G.
$i_{t}(G)$: Number of independent sets with size t in $G(t \in\{0,1, \ldots, n\})$.

Question

Given a family of graphs \mathcal{G}, what is the maximum value of $i(G)$ and $i_{t}(G)$ as G ranges over \mathcal{G} ?

Fixed order, trees

$\mathcal{G}(n)$: trees on n vertices

Fixed order, trees

$\mathcal{G}(n)$: trees on n vertices

Theorem (Prodinger, Tichy 1982)
For $G \in \mathcal{G}(n)$,

- $i(G)$ maximized by the star $K_{1, n-1}$.

Fixed order, trees

$\mathcal{G}(n)$: trees on n vertices

Theorem (Prodinger, Tichy 1982)
For $G \in \mathcal{G}(n)$,

- $i(G)$ maximized by the star $K_{1, n-1}$.

Theorem (Wingard 1995)
For $G \in \mathcal{G}(n)$,

- $i_{t}(G)$ maximized by the star $K_{1, n-1}$ for all t.

Fixed order, fixed number of edges

$\mathcal{G}(n, m)$: graphs with n vertices, m edges

Fixed order, fixed number of edges

$\mathcal{G}(n, m)$: graphs with n vertices, m edges
Theorem (Cutler, Radcliffe 2011)
For $G \in \mathcal{G}(n, m)$,

- $i(G)$ maximized by Lex (n, m)
- $i_{t}(G)$ maximized by Lex (n, m) for all t.

Fixed order, fixed number of edges

$\mathcal{G}(n, m)$: graphs with n vertices, m edges
Theorem (Cutler, Radcliffe 2011)
For $G \in \mathcal{G}(n, m)$,

- $i(G)$ maximized by Lex (n, m)
- $i_{t}(G)$ maximized by Lex (n, m) for all t.

Fixed order, regular of fixed degree

$\mathcal{G}(n, d)$: graphs with n vertices, d-regular

Fixed order, regular of fixed degree

$\mathcal{G}(n, d)$: graphs with n vertices, d-regular

Theorem (Kahn 2001; Zhao 2011)

For $G \in \mathcal{G}(n, d)$,

- $i(G)$ maximized by $\frac{n}{2 d} K_{d, d}$, disjoint union of $\frac{n}{2 d}$ copies of $K_{d, d}$.

Fixed order, regular of fixed degree
$\mathcal{G}(n, d)$: graphs with n vertices, d-regular

Theorem (Kahn 2001; Zhao 2011)
For $G \in \mathcal{G}(n, d)$,

- $i(G)$ maximized by $\frac{n}{2 d} K_{d, d}$, disjoint union of $\frac{n}{2 d}$ copies of $K_{d, d}$.

Conjecture (Kahn 2001)
For $G \in \mathcal{G}(n, d)$,

- $i_{t}(G)$ maximized by $\frac{n}{2 d} K_{d, d}$ for all t.
- Asymptotic evidence for conjecture given by Carroll, G., Tetali (2009)

Today's family: fixed order, fixed minimum degree $\mathcal{G}(n, \delta)$: n-vertex graphs with minimum degree δ
Intuition: fewer edges implies more independent sets.

Today's family: fixed order, fixed minimum degree $\mathcal{G}(n, \delta)$: n-vertex graphs with minimum degree δ
Intuition: fewer edges implies more independent sets.
Naive Conjecture
$i(G), i_{t}(G)$ maximized in $\mathcal{G}(n, \delta)$ by disjoint union of $K_{\delta, \delta}$'s

Today's family: fixed order, fixed minimum degree $\mathcal{G}(n, \delta): n$-vertex graphs with minimum degree δ
Intuition: fewer edges implies more independent sets.

Naive Conjecture

$i(G), i_{t}(G)$ maximized in $\mathcal{G}(n, \delta)$ by disjoint union of $K_{\delta, \delta}$'s
Wrong! even for $\delta=1$

Today's family: fixed order, fixed minimum degree $\mathcal{G}(n, \delta): n$-vertex graphs with minimum degree δ Intuition: fewer edges implies more independent sets.

Naive Conjecture

$i(G), i_{t}(G)$ maximized in $\mathcal{G}(n, \delta)$ by disjoint union of $K_{\delta, \delta}$'s
Wrong! even for $\delta=1$

$$
i\left(n K_{2}\right)=3^{n / 2}
$$

$$
i\left(K_{1, n-1}\right)=2^{n-1}+1
$$

New intuition: Maximize $\alpha(G)$

Fixed order, fixed minimum degree

Theorem (G. 2011)
For $n \geq 4 \delta^{2}$ and $G \in \mathcal{G}(n, \delta)$,

- $i(G)$ uniquely maximized by $K_{\delta, n-\delta}$.

Fixed order, fixed minimum degree

Theorem (G. 2011)
For $n \geq 4 \delta^{2}$ and $G \in \mathcal{G}(n, \delta)$,

- $i(G)$ uniquely maximized by $K_{\delta, n-\delta}$.

Conjecture

For $G \in \mathcal{G}(n, \delta)$,

- for $n \geq 2 \delta, i(G)$ uniquely maximized by $K_{\delta, n-\delta}$

Fixed order, fixed minimum degree

Theorem (G. 2011)
For $n \geq 4 \delta^{2}$ and $G \in \mathcal{G}(n, \delta)$,

- $i(G)$ uniquely maximized by $K_{\delta, n-\delta}$.

Conjecture

For $G \in \mathcal{G}(n, \delta)$,

- for $n \geq 2 \delta, i(G)$ uniquely maximized by $K_{\delta, n-\delta}$
- for $n<2 \delta, i(G)$ uniquely maximized by $K_{n-\delta, n-\delta, \ldots, n-\delta, x}$ where $x<n-\delta$.
$\mathcal{G}(n, \delta)$: fixed size independent sets
$i_{2}(G)=\binom{n}{2}-|E(G)| \Longrightarrow$ a regular $G\left(\right.$ not $K_{\delta, n-\delta}!$) is maximizer
$\mathcal{G}(n, \delta)$: fixed size independent sets
$i_{2}(G)=\binom{n}{2}-|E(G)| \Longrightarrow$ a regular $G\left(\right.$ not $K_{\delta, n-\delta}!$) is maximizer
Conjecture (G. 2011)
For $n \geq 2 \delta, t \geq 3$, and $G \in \mathcal{G}(n, \delta)$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)
$$

$\mathcal{G}(n, \delta)$: fixed size independent sets
$i_{2}(G)=\binom{n}{2}-|E(G)| \Longrightarrow$ a regular $G\left(\right.$ not $\left.K_{\delta, n-\delta}!\right)$ is maximizer
Conjecture (G. 2011)
For $n \geq 2 \delta, t \geq 3$, and $G \in \mathcal{G}(n, \delta)$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)
$$

Progress:

Theorem (Alexander, Cutler, Mink 2011)
Conjecture true for bipartite $G \in \mathcal{G}(n, \delta)$.
$\mathcal{G}(n, \delta)$: fixed size independent sets
$i_{2}(G)=\binom{n}{2}-|E(G)| \Longrightarrow$ a regular $G\left(\right.$ not $\left.K_{\delta, n-\delta}!\right)$ is maximizer
Conjecture (G. 2011)
For $n \geq 2 \delta, t \geq 3$, and $G \in \mathcal{G}(n, \delta)$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)
$$

Progress:

Theorem (Alexander, Cutler, Mink 2011)
Conjecture true for bipartite $G \in \mathcal{G}(n, \delta)$.

Theorem (E., G. 2012+)
Conjecture true for

- $\delta=1,2,3$
- $\delta \geq 4$ and $t \geq 2 \delta+1$
$\mathcal{G}(n, \delta)$: fixed size independent sets
$i_{2}(G)=\binom{n}{2}-|E(G)| \Longrightarrow$ a regular $G\left(\right.$ not $\left.K_{\delta, n-\delta}!\right)$ is maximizer
Conjecture (G. 2011)
For $n \geq 2 \delta, t \geq 3$, and $G \in \mathcal{G}(n, \delta)$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)
$$

Progress:

Theorem (Alexander, Cutler, Mink 2011)
Conjecture true for bipartite $G \in \mathcal{G}(n, \delta)$.

Theorem (E., G. 2012+)
Conjecture true for

- $\delta=1,2,3$
- $\delta \geq 4$ and $t \geq 2 \delta+1 \longleftarrow \star$ We'll show this today \star

Proof for $t \geq 2 \delta+1$

Observation

Suffices to consider $t=2 \delta+1$.

Proof for $t \geq 2 \delta+1$

Observation

Suffices to consider $t=2 \delta+1$.
Proof: Suppose that for some $t>\delta$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)=\binom{n-\delta}{t} .
$$

Then

$$
\#\left(\text { ordered independent } t \text {-sets) } \leq(n-\delta)^{\underline{t}}\right.
$$

Proof for $t \geq 2 \delta+1$

Observation

Suffices to consider $t=2 \delta+1$.
Proof: Suppose that for some $t>\delta$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)=\binom{n-\delta}{t} .
$$

Then

$$
\#\left(\text { ordered independent } t \text {-sets) } \leq(n-\delta)^{\underline{t}}\right.
$$

Ordered $(t+1)$-set: choose first t, which rules out $t+\delta$ vertices, so:
\#(ordered independent $(t+1)$-sets) $\leq(n-\delta)^{t}(n-(\delta+t))=(n-\delta)^{t+1}$

Proof for $t \geq 2 \delta+1$

Observation

Suffices to consider $t=2 \delta+1$.
Proof: Suppose that for some $t>\delta$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)=\binom{n-\delta}{t} .
$$

Then

$$
\#\left(\text { ordered independent } t \text {-sets) } \leq(n-\delta)^{\underline{t}}\right.
$$

Ordered $(t+1)$-set: choose first t, which rules out $t+\delta$ vertices, so:
\#(ordered independent $(t+1)$-sets) $\leq(n-\delta)^{t}(n-(\delta+t))=(n-\delta)^{t+1}$
therefore

$$
i_{t+1}(G) \leq\binom{ n-\delta}{t+1}=i_{t+1}\left(K_{\delta, n-\delta}\right) .
$$

Proof for $t \geq 2 \delta+1$

Goal: prove $t=2 \delta+1$ by induction on n.
Base cases: $n \leq 3 \delta+1$ is trivial.

Proof for $t \geq 2 \delta+1$

Goal: prove $t=2 \delta+1$ by induction on n.
Base cases: $n \leq 3 \delta+1$ is trivial. Inductive step, case 1: There is $v \in V(G)$ with $\delta(G-v)=\delta$. Then:

Proof for $t \geq 2 \delta+1$

Goal: prove $t=2 \delta+1$ by induction on n.
Base cases: $n \leq 3 \delta+1$ is trivial. Inductive step, case 1: There is $v \in V(G)$ with $\delta(G-v)=\delta$. Then:

$$
i_{t}(G)=i_{t}(G-v)+i_{t-1}(G-v-N(v))
$$

Proof for $t \geq 2 \delta+1$

Goal: prove $t=2 \delta+1$ by induction on n.
Base cases: $n \leq 3 \delta+1$ is trivial.
Inductive step, case 1: There is $v \in V(G)$ with $\delta(G-v)=\delta$. Then:

$$
\begin{aligned}
i_{t}(G) & =i_{t}(G-v)+i_{t-1}(G-v-N(v)) \\
& \leq\binom{(n-1)-\delta}{t}[\text { induction }]+\binom{n-(\delta+1)}{t-1} \text { [trivial bound] }
\end{aligned}
$$

Proof for $t \geq 2 \delta+1$

Goal: prove $t=2 \delta+1$ by induction on n.
Base cases: $n \leq 3 \delta+1$ is trivial.
Inductive step, case 1: There is $v \in V(G)$ with $\delta(G-v)=\delta$. Then:

$$
\begin{aligned}
i_{t}(G) & =i_{t}(G-v)+i_{t-1}(G-v-N(v)) \\
& \leq\binom{(n-1)-\delta}{t} \text { [induction] }+\binom{n-(\delta+1)}{t-1} \text { [trivial bound] } \\
& =\binom{n-\delta}{t} .
\end{aligned}
$$

Proof for $t \geq 2 \delta+1$

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G-v)=\delta$.

Proof for $t \geq 2 \delta+1$

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G-v)=\delta$.
Ordered independent t-sets starting with vertex of degree $>\delta$:

$$
\#_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3)) \cdots(n-(\delta+t))
$$

where k is the number of vertices with degree $>\delta$.

Proof for $t \geq 2 \delta+1$

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G-v)=\delta$.
Ordered independent t-sets starting with vertex of degree $>\delta$:

$$
\#>\delta \leq k(n-(\delta+2))(n-(\delta+3)) \cdots(n-(\delta+t))
$$

where k is the number of vertices with degree $>\delta$.
Ordered independent t-sets starting with vertex of degree $=\delta$:

$$
\begin{aligned}
& \#=\delta \leq(n-k)(n-(\delta+1))(n-(\delta+2)) \cdots \\
&\left(n-\frac{(2 \delta+1))(n-(2 \delta+2)) \cdots(n-(\delta+t))}{(n)}\right.
\end{aligned}
$$

Missing term?

- Worst case situation: each new choice shares same δ neighbors

Proof for $t \geq 2 \delta+1$

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G-v)=\delta$.
Ordered independent t-sets starting with vertex of degree $>\delta$:

$$
\#>\delta \leq k(n-(\delta+2))(n-(\delta+3)) \cdots(n-(\delta+t))
$$

where k is the number of vertices with degree $>\delta$.
Ordered independent t-sets starting with vertex of degree $=\delta$:

$$
\begin{aligned}
& \#=\delta \leq(n-k)(n-(\delta+1))(n-(\delta+2)) \cdots \\
&\left(n-\frac{(2 \delta+1))(n-(2 \delta+2)) \cdots(n-(\delta+t))}{(n)}\right.
\end{aligned}
$$

Missing term?

- Worst case situation: each new choice shares same δ neighbors
- Can't happen $\delta+1$ times (or we're in case 1.)

Proof for $t \geq 2 \delta+1$

Inductive step, case 2: There is no $v \in V(G)$ with $\delta(G-v)=\delta$.
Ordered independent t-sets starting with vertex of degree $>\delta$:

$$
\#>\delta \leq k(n-(\delta+2))(n-(\delta+3)) \cdots(n-(\delta+t))
$$

where k is the number of vertices with degree $>\delta$.
Ordered independent t-sets starting with vertex of degree $=\delta$:

$$
\begin{aligned}
& \#=\delta \leq(n-k)(n-(\delta+1))(n-(\delta+2)) \cdots \\
&\left(n-\frac{(2 \delta+1))(n-(2 \delta+2)) \cdots(n-(\delta+t))}{}\right.
\end{aligned}
$$

Missing term?

- Worst case situation: each new choice shares same δ neighbors
- Can't happen $\delta+1$ times (or we're in case 1 .)
- ($\delta+1$)st choice (at worst) removes a new vertex

Proof for $t \geq 2 \delta+1$

Have

$$
\#>\delta \leq k(n-(\delta+2))(n-(\delta+3)) \cdots(n-(\delta+t))
$$

and

$$
\begin{aligned}
& \#=\delta \leq(n-k)(n-(\delta+1))(n-(\delta+2)) \cdots \\
&\left(n-\frac{(2 \delta+1))(n-(2 \delta+2)) \cdots(n-(\delta+t)) .}{}\right.
\end{aligned}
$$

Proof for $t \geq 2 \delta+1$

Have

$$
\#>\delta \leq k(n-(\delta+2))(n-(\delta+3)) \cdots(n-(\delta+t))
$$

and

$$
\begin{aligned}
\#_{=\delta} \leq(n-k)(n-(\delta+1))(n-(\delta+2)) & \cdots \\
& (n-\overline{(2 \delta+1))(n-(2 \delta+2))} \cdots(n-(\delta+t)) .
\end{aligned}
$$

Worst case is $k=0$:

$$
\begin{aligned}
& i_{t}(G) \leq \frac{1}{t!} n(n-(\delta+1))(n-(\delta+2)) \cdots \\
& \quad(n-(2 \delta+1))(n-(2 \delta+2)) \cdots(n-(\delta+t))
\end{aligned}
$$

Proof for $t \geq 2 \delta+1$

Have

$$
\#_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3)) \cdots(n-(\delta+t))
$$

and

$$
\begin{aligned}
& \#=\delta \leq(n-k)(n-(\delta+1))(n-(\delta+2)) \cdots \\
&(n-(2 \delta+1))(n-(2 \delta+2)) \cdots(n-(\delta+t))
\end{aligned}
$$

Worst case is $k=0$:

$$
\left.\begin{array}{rl}
i_{t}(G) & \leq \frac{1}{t!} n(n-(\delta+1))(n-(\delta+2)) \cdots \\
& \leq \frac{1}{t!}(n-\delta)(n-(\delta+1)) \cdots \\
\quad(n-(2 \delta+1))(n-(2 \delta+2)) \cdots(n-(\delta+t))
\end{array}\right] \begin{gathered}
(n-1)) \cdots(n-(\delta+(t-1))) \text { [uses } t=2 \delta+1] \\
\\
\end{gathered}
$$

Final remarks

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]

Final remarks

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]

The result for $\delta=1,2,3$:

- $\delta=1$ is covered by $t \geq 2 \delta+1$
- $\delta=2,3$ involves messy case analysis, structural characterization of δ-critical graphs.
- $\delta \geq 4$ seems hard with these methods (still open for $3 \leq t \leq 2 \delta$).

Final remarks

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]

The result for $\delta=1,2,3$:

- $\delta=1$ is covered by $t \geq 2 \delta+1$
- $\delta=2,3$ involves messy case analysis, structural characterization of δ-critical graphs.
- $\delta \geq 4$ seems hard with these methods (still open for $3 \leq t \leq 2 \delta$).

Question

For $n<2 \delta, t \geq 3$ and $G \in \mathcal{G}(n, \delta)$, is $i_{t}(G)$ maximized by $K_{n-\delta, n-\delta, \ldots, n-\delta, x}$, where $x<n-\delta$?

Final remarks

Future improvements?

- Consider second/third/etc. choices more carefully
- Condition on the degrees of neighbors [linear programming]

The result for $\delta=1,2,3$:

- $\delta=1$ is covered by $t \geq 2 \delta+1$
- $\delta=2,3$ involves messy case analysis, structural characterization of δ-critical graphs.
- $\delta \geq 4$ seems hard with these methods (still open for $3 \leq t \leq 2 \delta$).

Question

For $n<2 \delta, t \geq 3$ and $G \in \mathcal{G}(n, \delta)$, is $i_{t}(G)$ maximized by $K_{n-\delta, n-\delta, \ldots, n-\delta, x}$, where $x<n-\delta$?

Thank you!

