UPPER BOUNDS ON THE SIZE OF 4- AND 6-CYCLE-FREE SUBGRAPHS OF THE HYPERCUBE

Ping Hu
Joint work with József Balogh, Bernard Lidický and Hong Liu

University of Illinois at Urbana-Champaign
MIGHTY LII - April 28, 2012

Hypercube

- \mathcal{Q}_{n} is n-dimensional hypercube (n-cube)

\mathcal{Q}_{1}

\mathcal{Q}_{2}

\mathcal{Q}_{3}

Hypercube

- \mathcal{Q}_{n} is n-dimensional hypercube (n-cube)

\mathcal{Q}_{1}

\mathcal{Q}_{2}

\mathcal{Q}_{3}
- e(G) $:=|E(G)|$

Hypercube

- \mathcal{Q}_{n} is n-dimensional hypercube (n-cube)

\mathcal{Q}_{1}
\mathcal{Q}_{2}

- e(G) $:=|E(G)|$
- $\operatorname{ex}_{\mathcal{Q}}(n, F):=$ the maximum number of edges of a F-free subgraph of \mathcal{Q}_{n}

Hypercube

- \mathcal{Q}_{n} is n-dimensional hypercube (n-cube)

\mathcal{Q}_{1}
\mathcal{Q}_{2}

- $e(G):=|E(G)|$
- $\operatorname{ex}_{\mathcal{Q}}(n, F):=$ the maximum number of edges of a F-free subgraph of \mathcal{Q}_{n}
- $\pi_{\mathcal{Q}}(F)=\lim _{n \rightarrow \infty} \frac{e x_{\mathcal{Q}}(n, F)}{e\left(\mathcal{Q}_{n}\right)}$

$\pi_{\mathcal{Q}}\left(C_{2 t}\right)$

Conjecture (ERDős [1984]) $\pi_{\mathcal{Q}}\left(C_{4}\right)=1 / 2, \pi_{\mathcal{Q}}\left(C_{2 t}\right)=0$ for $t>2$

$\pi_{\mathcal{Q}}\left(C_{2 t}\right)$

Conjecture (ERDŐs [1984])
 $\pi_{\mathcal{Q}}\left(C_{4}\right)=1 / 2, \pi_{\mathcal{Q}}\left(C_{2 t}\right)=0$ for $t>2$

\mathcal{Q}_{7}

\mathcal{Q}_{7}

$$
\pi_{\mathcal{Q}}\left(C_{4}\right) \geq 1 / 2
$$

$\pi_{\mathcal{Q}}\left(C_{2 t}\right)$

Conjecture (ERDŐs [1984])
 $\pi_{\mathcal{Q}}\left(C_{4}\right)=1 / 2, \pi_{\mathcal{Q}}\left(C_{2 t}\right)=0$ for $t>2$

\mathcal{Q}_{7}

\mathcal{Q}_{7}

$$
\pi_{\mathcal{Q}}\left(C_{4}\right) \geq 1 / 2
$$

$\pi_{\mathcal{Q}}\left(C_{2 t}\right)$

Conjecture (Erdős [1984]) $\pi_{\mathcal{Q}}\left(C_{4}\right)=1 / 2, \pi_{\mathcal{Q}}\left(C_{2 t}\right)=0$ for $t>2$

Theorem (Chung [1992], Brouwer-Dejter-Thomassen [1993])
$\pi_{\mathcal{Q}}\left(C_{6}\right) \geq 1 / 4$

$\pi_{\mathcal{Q}}\left(C_{2 t}\right)$

```
Conjecture (Erdős [1984])
\mp@subsup{\pi}{\mathcal{Q}}{}(\mp@subsup{C}{4}{})=1/2,\mp@subsup{\pi}{\mathcal{Q}}{(}(\mp@subsup{C}{2t}{})=0\mathrm{ for }t>2
```

Theorem (Chung [1992], Brouwer-Dejter-Thomassen [1993])
$\pi_{\mathcal{Q}}\left(C_{6}\right) \geq 1 / 4$

Theorem (Conder [1993]) $\pi_{\mathcal{Q}}\left(C_{6}\right) \geq 1 / 3$

$\pi_{\mathcal{Q}}\left(C_{2 t}\right)$

Conjecture (Erdős [1984])
 $\pi_{\mathcal{Q}}\left(C_{4}\right)=1 / 2, \pi_{\mathcal{Q}}\left(C_{2 t}\right)=0$ for $t>2$.

```
Theorem (Chung [1992])
\mp@subsup{\pi}{\mathcal{Q}}{(n, C2t})=0\mathrm{ for even }t\geq4.
```

Theorem (Füredi-Özkahya [2009])
$\pi_{\mathcal{Q}}\left(C_{2 t}\right)=0$ for odd $t \geq 7$.

$\pi_{\mathcal{Q}}\left(C_{2 t}\right)$

Conjecture (ERdős [1984])
 $\pi_{\mathcal{Q}}\left(C_{4}\right)=1 / 2, \pi_{\mathcal{Q}}\left(C_{2 t}\right)=0$ for $t>2$.

$$
\begin{aligned}
& \text { Theorem (Chung [1992]) } \\
& \pi_{\mathcal{Q}}\left(n, C_{2 t}\right)=0 \text { for even } t \geq 4 \text {. }
\end{aligned}
$$

Theorem (Füredi-Özkahya [2009])
$\pi_{\mathcal{Q}}\left(C_{2 t}\right)=0$ for odd $t \geq 7$.
if $\pi_{\mathcal{Q}}\left(C_{10}\right)=0$ is still open.

Theorem (Brass-Harborth-Nienborg [1995]) $\operatorname{ex}_{\mathcal{Q}}\left(n, C_{4}\right) \geq \frac{1}{2}\left(1+\frac{1}{\sqrt{n}}\right) e\left(\mathcal{Q}_{n}\right)($ valid when n is a power of 4$)$

$\pi_{\mathcal{Q}}\left(C_{4}\right)$

Theorem (Brass-Harborth-Nienborg [1995]) $\operatorname{ex}_{\mathcal{Q}}\left(n, C_{4}\right) \geq \frac{1}{2}\left(1+\frac{1}{\sqrt{n}}\right) e\left(\mathcal{Q}_{n}\right)($ valid when n is a power of 4$)$

```
Theorem (Chung [1992])
\mp@subsup{\pi}{\mathcal{Q}}{(}(\mp@subsup{C}{4}{})\leq0.62284.
```


Theorem (Brass-Harborth-Nienborg [1995]) $e x_{\mathcal{Q}}\left(n, C_{4}\right) \geq \frac{1}{2}\left(1+\frac{1}{\sqrt{n}}\right) e\left(\mathcal{Q}_{n}\right)$ (valid when n is a power of 4)

```
Theorem (Chung [1992])
\mp@subsup{\pi}{\mathcal{Q}}{}(\mp@subsup{C}{4}{})\leq0.62284.
```

Theorem (Thomason-Wagner [2009]) $\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 0.62256$.

Theorem (Brass-Harborth-Nienborg [1995]) $e x_{\mathcal{Q}}\left(n, C_{4}\right) \geq \frac{1}{2}\left(1+\frac{1}{\sqrt{n}}\right) e\left(\mathcal{Q}_{n}\right)$ (valid when n is a power of 4)

```
Theorem (Chung [1992])
\mp@subsup{\pi}{\mathcal{Q}}{}(\mp@subsup{C}{4}{})\leq0.62284.
```

Theorem (Thomason-Wagner [2009]) $\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 0.62083$.

Theorem (Brass-Harborth-Nienborg [1995]) $e x_{\mathcal{Q}}\left(n, C_{4}\right) \geq \frac{1}{2}\left(1+\frac{1}{\sqrt{n}}\right) e\left(\mathcal{Q}_{n}\right)$ (valid when n is a power of 4)

```
Theorem (Chung [1992])
\pi
```

Theorem (Thomason-Wagner [2009])
$\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 0.62083$.

Theorem (Balogh-Hu-Lidický-Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 0.6068$.

$\pi_{\mathcal{Q}}\left(n, C_{6}\right)$

Theorem (Conder [1993]) $\pi_{\mathcal{Q}}\left(C_{6}\right) \geq 1 / 3$.

$\pi_{\mathcal{Q}}\left(n, C_{6}\right)$

Theorem (Conder [1993]) $\pi_{\mathcal{Q}}\left(C_{6}\right) \geq 1 / 3$.

Theorem (Chung [1992])

$\pi_{\mathcal{Q}}\left(C_{6}\right) \leq \sqrt{2}-1 \approx 0.41421$.

$\pi_{\mathcal{Q}}\left(n, C_{6}\right)$

```
Theorem (Conder [1993])
\mp@subsup{\pi}{\mathcal{Q}}{}(\mp@subsup{C}{6}{})\geq1/3.
```

Theorem (Chung [1992])
$\pi_{\mathcal{Q}}\left(C_{6}\right) \leq \sqrt{2}-1 \approx 0.41421$.

Theorem (Balogh-Hu-Lidický-Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}\left(C_{6}\right) \leq 0.3755$.

Flag Algebras

DEFINITION

$p(H, G)$: the probability that a random $|V(H)|$-set U in $V(G)$ induces $G[U]$ isomorphic to H.

Razborov [2007] developed flag algebras. Let \mathcal{G} be the family of graphs forbidding some structures, then flag algebras can be used to bound

$$
\lim _{G \in \mathcal{G},|V(G)| \rightarrow \infty} p(H, G)
$$

Results using Flag Algebras

Results using Flag Algebras

Theorem (Hladký-Král'-Norine [2009])

Every n-vertex digraph with minimum outdegree at least $0.3465 n$ contains a triangle.

Results using Flag Algebras

Theorem (Hladký-Král'-Norine [2009])

Every n-vertex digraph with minimum outdegree at least $0.3465 n$ contains a triangle.

Theorem (Hatami-Hladký-Král'-Norine-Razborov [2011], Grzesik [2011])

The number of $C_{5} 5$ in a triangle-free graph of order n is at most $(n / 5)^{5}$.

Results using Flag Algebras

Theorem (Hladký-Král'-Norine [2009])

Every n-vertex digraph with minimum outdegree at least $0.3465 n$ contains a triangle.

Theorem (Hatami-Hladký-Král'-Norine-Razborov [2011], Grzesik [2011])

The number of $C_{5} s$ in a triangle-free graph of order n is at most $(n / 5)^{5}$.

$$
\begin{aligned}
& \text { THEOREM (FALGAS-RAVRY-VAUGHAN }[2011]) \\
& \frac{\pi\left(K_{4}^{-}, C_{5}, F_{3,2}\right)=12 / 49, \pi\left(K_{4}^{-}, F_{3,2}\right)=5 / 18}{F_{3,2}:\{123,145,245,345\}, C_{5}:\{123,234,345,451,512\} .}
\end{aligned}
$$

Proof by an Example

Example
$\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 2 / 3$

Proof by an Example

```
Example
\mp@subsup{\pi}{\mathcal{Q}}{(}(\mp@subsup{C}{4}{})\leq2/3
```

Bound infinite problem by a finite piece.

Proof by an Example

Example

$\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 2 / 3$
Bound infinite problem by a finite piece.

Definition

\mathcal{H}_{n} : the family of spanning subgraphs of \mathcal{Q}_{n} not containing C_{4}.
Let $H \in \mathcal{H}_{s}, G \in \mathcal{H}_{n}, s<n, p(H, G)$ is the probability that a random s-hypercube vertex set in G induces H.
$\rho(G)=e(G) / e\left(\mathcal{Q}_{n}\right)$.

Proof by an Example

Example

$\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 2 / 3$
Bound infinite problem by a finite piece.

Definition

\mathcal{H}_{n} : the family of spanning subgraphs of \mathcal{Q}_{n} not containing C_{4}.
Let $H \in \mathcal{H}_{s}, G \in \mathcal{H}_{n}, s<n, p(H, G)$ is the probability that a random s-hypercube vertex set in G induces H.
$\rho(G)=e(G) / e\left(\mathcal{Q}_{n}\right)$.

$$
\rho(G)=\sum_{H \in \mathcal{H}_{s}} \rho(H) p(H, G)
$$

Proof by an Example

Example

$$
\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 2 / 3
$$

Bound infinite problem by a finite piece.

DEFINITION

\mathcal{H}_{n} : the family of spanning subgraphs of \mathcal{Q}_{n} not containing C_{4}.
Let $H \in \mathcal{H}_{s}, G \in \mathcal{H}_{n}, s<n, p(H, G)$ is the probability that a random s-hypercube vertex set in G induces H. $\rho(G)=e(G) / e\left(\mathcal{Q}_{n}\right)$.

$$
\begin{gathered}
\rho(G)=\sum_{H \in \mathcal{H}_{s}} \rho(H) p(H, G) \\
\rho(G) \leq \max _{H \in \mathcal{H}_{s}} \rho(H)
\end{gathered}
$$

Proof by an Example

Example

$$
\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 2 / 3
$$

Bound infinite problem by a finite piece.

DEFINITION

\mathcal{H}_{n} : the family of spanning subgraphs of \mathcal{Q}_{n} not containing C_{4}.
Let $H \in \mathcal{H}_{s}, G \in \mathcal{H}_{n}, s<n, p(H, G)$ is the probability that a random s-hypercube vertex set in G induces H. $\rho(G)=e(G) / e\left(\mathcal{Q}_{n}\right)$.

$$
\begin{gathered}
\rho(G)=\sum_{H \in \mathcal{H}_{s}} \rho(H) p(H, G) \\
\pi_{\mathcal{Q}}\left(C_{4}\right) \leq \max _{H \in \mathcal{H}_{s}} \rho(H)
\end{gathered}
$$

Is THE BOUND GOOD?

$$
\begin{gathered}
\rho(G)=\sum_{H \in \mathcal{H}_{s}} \rho(H) p(H, G) \\
\pi_{\mathcal{Q}}\left(C_{4}\right) \leq \max _{H \in \mathcal{H}_{s}} \rho(H)
\end{gathered}
$$

Is THE BOUND GOOD?

$$
\begin{gathered}
\rho(G)=\sum_{H \in \mathcal{H}_{s}} \rho(H) p(H, G) \\
\pi_{\mathcal{Q}}\left(C_{4}\right) \leq \max _{H \in \mathcal{H}_{s}} \rho(H)
\end{gathered}
$$

\mathcal{H}_{2}

H_{2}

H_{3}

H_{4}

H_{5}

Is THE BOUND GOOD?

$$
\begin{gathered}
\rho(G)=\sum_{H \in \mathcal{H}_{s}} \rho(H) p(H, G) \\
\pi_{\mathcal{Q}}\left(C_{4}\right) \leq \max _{H \in \mathcal{H}_{s}} \rho(H)
\end{gathered}
$$

$$
\mathcal{H}_{2}
$$

H_{1}

$$
\begin{gathered}
H_{2} \\
\pi_{\mathcal{Q}}\left(C_{4}\right) \leq \max \rho\left(H_{i}\right)=\rho\left(H_{5}\right)=3 / 4
\end{gathered}
$$

Is THE BOUND GOOD?

$$
\rho(G)=\sum_{H \in \mathcal{H}_{s}} \rho(H) p(H, G)
$$

If $0 \leq \sum_{i} c_{H_{i}} p\left(H_{i}, G\right)$, then

Is THE BOUND GOOD?

$$
\rho(G)=\sum_{H \in \mathcal{H}_{s}} \rho(H) p(H, G)
$$

H_{2}

H_{4}

H_{5}

If $0 \leq \sum_{i} c_{H_{i}} p\left(H_{i}, G\right)$, then

$$
\begin{gathered}
\rho(G) \leq \sum_{i}\left(\rho\left(H_{i}\right)+c_{H_{i}}\right) p\left(H_{i}, G\right) \\
\pi_{\mathcal{Q}}\left(C_{4}\right) \leq \max _{i}\left(\rho\left(H_{i}\right)+c_{H_{i}}\right)
\end{gathered}
$$

$c_{H_{i}}$ might be negative

Optimize $c_{H_{i}}$

Let M be a positive semidefinite 2-by-2 matrix.

$$
M=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

Optimize $c_{H_{i}}$

Let M be a positive semidefinite 2-by-2 matrix.

$$
M=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

$$
\begin{aligned}
& \rho\left(H_{1}\right)+c_{H_{1}}=0+m_{11} \\
& \rho\left(H_{2}\right)+c_{H_{2}}=1 / 4+m_{11} / 2+m_{12} / 2 \\
& \rho\left(H_{3}\right)+c_{H_{3}}=1 / 2+m_{12} \\
& \rho\left(H_{4}\right)+c_{H_{4}}=1 / 2+m_{11} / 4+m_{12} / 2+m_{22} / 4 \\
& \rho\left(H_{5}\right)+c_{H_{5}}=3 / 4+m_{12} / 2+m_{22} / 2 \\
& \\
& \pi_{\mathcal{Q}}\left(C_{4}\right) \leq \max _{i}\left(\rho\left(H_{i}\right)+c_{H_{i}}\right)
\end{aligned}
$$

Solution

Take

$$
M=\left(\begin{array}{cc}
2 / 3 & -1 / 3 \\
-1 / 3 & 1 / 6
\end{array}\right)
$$

then

$$
\max _{i}\left(\rho\left(H_{i}\right)+c_{H_{i}}\right)=2 / 3
$$

Results

Theorem (Balogh-Hu-Lidický-Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 0.6068$.

Theorem (Balogh-Hu-Lidický-Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}\left(C_{6}\right) \leq 0.3755$.

By using \mathcal{H}_{3}.

Results

Theorem (Balogh-Hu-Lidický-Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}\left(C_{4}\right) \leq 0.6068$.

Theorem (Balogh-Hu-Lidický-Liu, ind. Baber [2012+]) $\pi_{\mathcal{Q}}\left(C_{6}\right) \leq 0.3755$.

By using \mathcal{H}_{3}.
Almost surely can be improved by waiting.

Thank you for your attention!

