Light Spanners with Stack and Queue Charging Schemes

Vincent Hung¹

¹Department of Math & CS Emory University

The 52nd Midwest Graph Theory Conference, 2012

Metrical Optimization Problems in Graphs (e.g. TSP) Previous Work: Charging Schemes Book Embedding vs. Stack and Queue Charging Scheme Graph Families for Queue and Stack Schemes

(日) (日) (日) (日) (日) (日) (日)

Results for the Talk

Metrical Optimization Problems in Graphs (e.g. TSP)

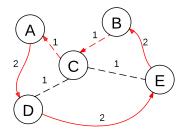
Previous Work: Charging Schemes Book Embedding vs. Stack and Queue Charging Scheme Graph Families for Queue and Stack Schemes

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results for the Talk

Traveling Salesman Problem

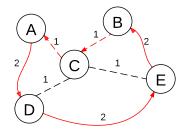
- TSP NP Complete
- 1-2 TSP MAX-SNP Hard
- Metric TSP ∃ A Fast 2 Approximation Algorithm



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Metric TSP

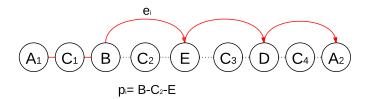
- There are approximation algorithms for Metric TSP with bounded errors.
- Have: Error $\leq \epsilon w(G)$
- Want: Error $\leq \epsilon w(MST)$
- ► Lucky: $w(G') \le \epsilon w(MST)$ G': pruned graph from G



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Light Spanners for Metric Optimization

- Candidate: Light Spanners
- $G' = Span(G, 1 + \epsilon)$ with the following good properties:
- 1 "Span": for $u, v \in V$, $d_{G'}(u, v) \leq (1 + \epsilon)d_G(u, v)$
- 2 "Light": $w(G') \leq \frac{k}{\epsilon}w(MST)$



Metrical Optimization Problems in Graphs (e.g. TSP) Previous Work: Charging Schemes Book Embedding vs. Stack and Queue Charging Scheme

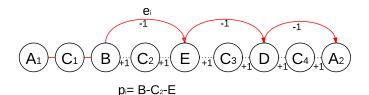
Graph Families for Queue and Stack Schemes

Results for the Talk

Charging Schemes for Bounded Pathwidth Graphs

Charging Scheme

- Charging Scheme (Proved by LP duality)
- For each (e_i, p_i), e_i pay 1 unit of charge, every e ∈ p_i receive 1 unit of charge
- Goal of the Dual Problem: to minimize the value of charges received for edges of trees



Metrical Optimization Problems in Graphs (e.g. TSP) Previous Work: Charging Schemes

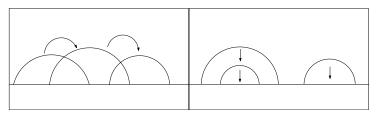
Book Embedding vs. Stack and Queue Charging Scheme Graph Families for Queue and Stack Schemes

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results for the Talk

Book Embedding vs. Charging Schemes

- Book Embedding: A book drawing of G onto a book B should be:
 - every vertex of G is mapped to the spine of B; and
 - every edge of G is mapped to a single page of B.
- A book embedding of G onto B requires the drawing does not have crossings.
- Every page is (outer)-planar
- Queue Scheme/Queue-compatible Page
- Stack Scheme/Stack-compatible Page



Queue and Stack Charging Schemes

- ► (c, d)-graph
- c Number of Queue Pages
- d Number of Stack Pages
- Retrospect: "Light": $w(G') \leq \frac{k}{\epsilon}w(MST)$

• If
$$c, d$$
 are $O(1) \rightarrow k$ is, too.

ヘロト 人間 とくほ とくほ とう

Metrical Optimization Problems in Graphs (e.g. TSP) Previous Work: Charging Schemes Book Embedding vs. Stack and Queue Charging Scheme Graph Families for Queue and Stack Schemes

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results for the Talk

- Planar Graphs \rightarrow (0,2)-graphs
- Technique: No Crossing
- ▶ Bounded Genus Graphs \rightarrow (6g 2,3g 2)-graphs
- Technique: Decompose Bounded Genus Graphs into union of planar graphs

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Robertson-Seymour Theory: graphs of minor-closed family can be decomposed into the following components:
 - 1 Bounded Genus Graphs
 - 2 Apices
 - **3 Vortices**
 - 4 Clique Sums
- Vortices: Bounded Pathwidth Graphs stitched to the surface
- Grigni's conjecture: every minor close graph family has light spanners

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Charging Bounded Pathwidth Graphs

To charge Bounded Pathwidth Graphs:

- 1 Convert it to Bounded Bandwidth Graphs
- 2 Construct a path by taking an Euler Tour of MST
- 3 Assume MST is a path, we show a counterexample
- $\hat{G} \rightarrow (O(\sqrt{n}), O(\sqrt{n}))$ -graphs and Bounded Pathwidth

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- ► To charge Bounded Pathwidth Graphs:
 - 1 Convert it to Bounded Bandwidth Graphs
 - 2 Construct a path by taking an Euler Tour of MST
 - 3 Assume MST is a path, we show a counterexample
 - $\hat{G} \to (O(\sqrt{n}), O(\sqrt{n}))$ -graphs and Bounded Pathwidth

- To charge Bounded Pathwidth Graphs:
 - 1 Convert it to Bounded Bandwidth Graphs
 - 2 Construct a path by taking an Euler Tour of MST
 - 3 Assume MST is a path, we show a counterexample
 - $\hat{G} \to (O(\sqrt{n}), O(\sqrt{n}))$ -graphs and Bounded Pathwidth

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- To charge Bounded Pathwidth Graphs:
 - 1 Convert it to Bounded Bandwidth Graphs
 - 2 Construct a path by taking an Euler Tour of MST
 - 3 Assume MST is a path, we show a counterexample
 - $\hat{G} \rightarrow (O(\sqrt{n}), O(\sqrt{n}))$ -graphs and Bounded Pathwidth

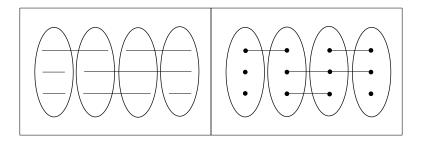
(日) (日) (日) (日) (日) (日) (日)

Metrical Optimization Problems in Graphs (e.g. TSP) Previous Work: Charging Schemes Book Embedding vs. Stack and Queue Charging Scheme Graph Families for Queue and Stack Schemes

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

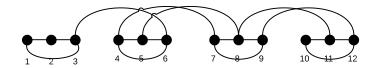
Results for the Talk

Convert Bounded Pathwidth Graphs to Bounded Bandwidth Graphs



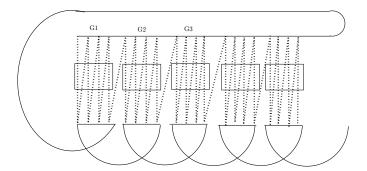
Bounded Bandwidth Graphs

- Goal: To Bound the Maximum Degree
- Assume weight 0 to edges between duplicate vertices



Bounded Pathwidth Graphs: Counterexample

- ▶ Solid Line: the MST *T* of *G*′
- ► Zig-Zag Line: edges not in T ($e \in G' T$)
- $O(\sqrt{n})$ Zig-Zag Edges in each group; total $O(\sqrt{n})$ groups



- Queue and Stack charging scheme cannot handle bounded pathwidth graphs
- However, we are able to solve it by creating a structure called "monotone tree" (http://arxiv.org/abs/1104.4669)

- Future Work
 - How to connect vortices to the plane or bounded genus graphs?

(日) (日) (日) (日) (日) (日) (日)

How to handle clique sum individually?