Graphic Representations of
 Long Chordless Cycles

Robert E. Jamison* and Douglas B. West

Department of Mathematics University of Illinois, Urbana-Champaign
*Affiliated Professor, University of Haifa
host graph H where the representation occurs
target graph G that we wish to represent

We assign a representative subgraph R_{v} of H to each vertex v in G
so that v and w are adjacent iff R_{v} and R_{w} "conflict" -
that is, they have "enough in common".

Examples:

Host: A tree T
Targets: Chordal graphs
Representatives: Subtrees of T
"Enough" (Conflict rule): A node

NOTE: Vertices of the target are "vertices" Vertices of the host are "nodes".

In this talk, all representatives will be isomorphic to a fixed representative prototype.

The conflict rule kicks in when two representatives contain a common copy of a fixed quota.

Host: A graph H
Targets: Line graphs
Representatives: P_{2} - i.e., edges of H Quota: P_{1} - i.e., a node of H.

Representative prototype: P_{4}
Quota prototype: P_{2}
r : order of the representative prototype R
q : order of the quota prototype Q

An $(H ; R, Q)$-representation of a graph G in a host H is an injective assignment $v \rightarrow R_{v}$ of a copy R_{v} of R to each vertex v of the target such that

$$
\begin{aligned}
v w & \in E(G) \\
& \Longleftrightarrow
\end{aligned}
$$

$R_{v} \cap R_{w}$ contains a copy of Q.

The universal graph has all copies of R in H as vertices, with adjacency determined as above.
G is representable \Longleftrightarrow
G an induced subgraph of the universal graph

Let K_{n} be the host.

Let M be the maximum number of Q-copies contained in an induced subgraph of H of order q.

Let G be the target graph with maximum clique size ω.

The order of G is bounded by $\omega M\binom{n}{q}$.
M and ω are constants with respect to n, so the maximum order of representable graphs with bounded clique size is $O\left(n^{q}\right)$.

This order is achieved if the representative prototype is P_{r} and the quota is P_{q}.

Assumptions:
$r>q \geq 2$
For a fixed $m \geq 2$ assume
$r-q$ and r both divide m^{q}.

Select a de Bruijn sequence a_{k} on an alphabet of m letters
such that each q-tuple occurs exactly once. Take the alphabet to be $[m]$.

Reference: Robert E. Jamison, Towards a Comprehensive Theory of Conflict-Tolerance Graphs, Proceedings of LAGOS Conference, to appear in Discrete Applied Math.

