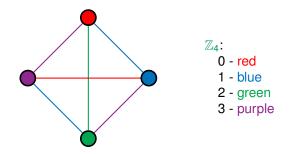
Rainbow spanning trees in Abelian groups

Bill Kinnersley

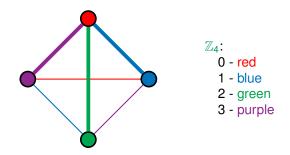
Department of Mathematics University of Illinois at Urbana-Champaign wkinner2@illinois.edu

> Joint work with Robert E. Jamison

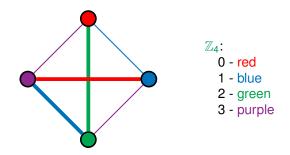
Label the vertices of K_n with elements of \mathbb{Z}_n ; label each edge with the sum of its endpoints.



Label the vertices of K_n with elements of \mathbb{Z}_n ; label each edge with the sum of its endpoints.

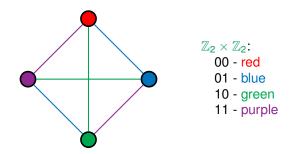


Label the vertices of K_n with elements of \mathbb{Z}_n ; label each edge with the sum of its endpoints.

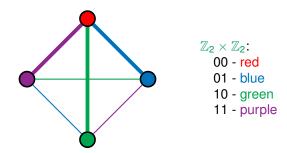


Try again; this time, use labels from $\mathbb{Z}_2 \times \mathbb{Z}_2$.

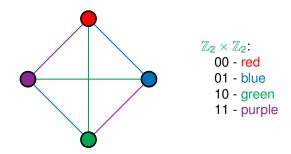
Try again; this time, use labels from $\mathbb{Z}_2 \times \mathbb{Z}_2$.



Try again; this time, use labels from $\mathbb{Z}_2 \times \mathbb{Z}_2$.

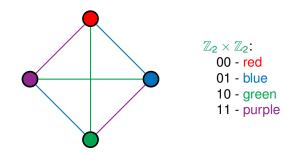


Try again; this time, use labels from $\mathbb{Z}_2 \times \mathbb{Z}_2$.



Which 4-vertex trees appear as rainbow trees? $K_{1,3}$ does; P_4 does not.

Try again; this time, use labels from $\mathbb{Z}_2 \times \mathbb{Z}_2$.



Which 4-vertex trees appear as rainbow trees? $K_{1,3}$ does; P_4 does not.

Given an Abelian group A, let K_A denote the corresponding edge-colored complete graph.

Which trees appear as rainbow spanning trees in K_A ?

We say that G is A-iridescent if it embeds as a rainbow subgraph in K_A .

We say that G is A-iridescent if it embeds as a rainbow subgraph in K_A .

An embedding of *G* in K_A corresponds to an injective labeling $\lambda : V(G) \to A$. For *G* to be a rainbow subgraph, all edges must have different sums.

We say that G is A-iridescent if it embeds as a rainbow subgraph in K_A .

An embedding of *G* in K_A corresponds to an injective labeling $\lambda : V(G) \to A$. For *G* to be a rainbow subgraph, all edges must have different sums.

An A-iridescent labeling is a labeling of the vertices of G with elements of A such that

- no two vertices have the same label
- no two edges have the same sum

We say that G is A-iridescent if it embeds as a rainbow subgraph in K_A .

An embedding of *G* in K_A corresponds to an injective labeling $\lambda : V(G) \to A$. For *G* to be a rainbow subgraph, all edges must have different sums.

An A-iridescent labeling is a labeling of the vertices of G with elements of A such that

- no two vertices have the same label
- no two edges have the same sum

G is *A*-iridescent if and only if *G* has an *A*-iridescent labeling.

We say that G is A-iridescent if it embeds as a rainbow subgraph in K_A .

An embedding of *G* in K_A corresponds to an injective labeling $\lambda : V(G) \to A$. For *G* to be a rainbow subgraph, all edges must have different sums.

An A-iridescent labeling is a labeling of the vertices of G with elements of A such that

- no two vertices have the same label
- no two edges have the same sum

G is A-iridescent if and only if G has an A-iridescent labeling.

Prior work: Beals-Gallian-Headley-Jungreis [cycles], Valentin [paths, cycles], Zheng $[A = \mathbb{Z}_2^k]$

A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Graceful labeling: Label from \mathbb{Z}_m , where m = |E(G)|. No two vertices have the same label. No two edges have the same absolute difference.

A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Graceful labeling: Label from \mathbb{Z}_m , where m = |E(G)|. No two vertices have the same label. No two edges have the same absolute difference.

Harmonious labeling: Label from \mathbb{Z}_m , where m = |E(G)|. No two vertices have the same label. No two edges have the same sum.

A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

```
Graceful labeling:
Label from \mathbb{Z}_m, where m = |E(G)|.
No two vertices have the same label.
No two edges have the same absolute difference.
```

Harmonious labeling: Label from \mathbb{Z}_m , where m = |E(G)|. No two vertices have the same label. No two edges have the same sum.

Cordial labeling: Label from Abelian group *A*. Distribution of labels on vertices is balanced. So is distribution of sums on edges.

A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

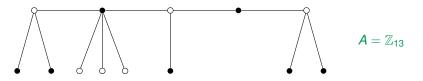
Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

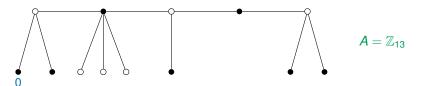


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

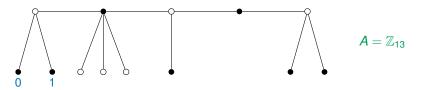


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

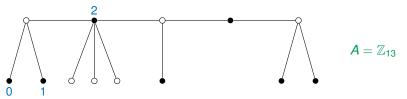


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

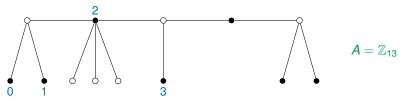


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

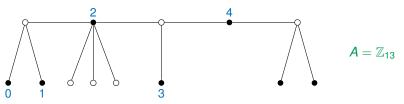


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.



A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

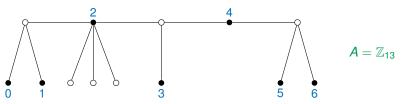


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

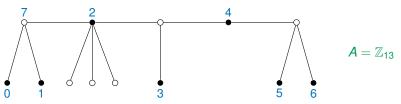


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

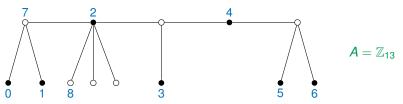


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

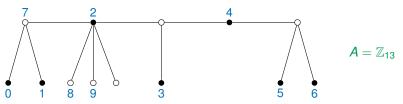


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

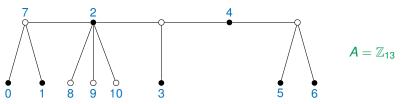


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

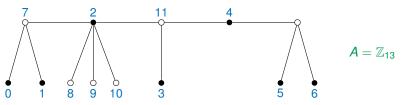


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

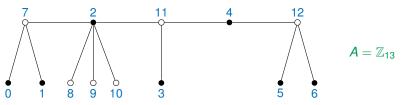


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

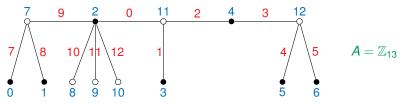


A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.



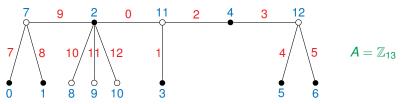
A-iridescent labeling: label vertices of G with elements of A so that

- no two vertices have the same label
- no two edges have the same sum

Theorem (Hovey)

Every *n*-vertex caterpillar is \mathbb{Z}_n -iridescent.

Proof (sketch).



Conjecture (Hovey) Every *n*-vertex tree is \mathbb{Z}_n -iridescent.

Conjecture (Hovey)

Every *n*-vertex tree is \mathbb{Z}_n -iridescent.

There's something special about the cyclic group.

Conjecture (Hovey) Every *n*-vertex tree is \mathbb{Z}_n -iridescent.

There's something special about the cyclic group.

Theorem

Let A be an Abelian group with order n and characteristic m. Let T be an n-vertex tree. If T has vertices u and v such that:

- $\blacktriangleright \ d(u) \equiv d(v) \equiv 0 \pmod{m},$
- $d(x) \equiv 1 \pmod{m}$ for all $x \in V(T) \{u, v\}$, and
- $uv \in E(T)$,

then T is not A-iridescent.

(Recall: the characteristic of A is the least m such that ma = 0 for all $a \in A$.)

Corollary

Let A be an Abelian group with order n and characteristic m. Let T be a tree with at least two vertices. If $n \ge m|V(T)|$, then T is contained in an n-vertex tree that is not A-iridescent.

(Note: the condition that $n \ge m |V(T)|$ forces *A* to be non-cyclic.)

Corollary

Let A be an Abelian group with order n and characteristic m. Let T be a tree with at least two vertices. If $n \ge m|V(T)|$, then T is contained in an n-vertex tree that is not A-iridescent.

(Note: the condition that $n \ge m |V(T)|$ forces A to be non-cyclic.)

On the other hand:

Proposition

Let A be an Abelian group of order n and let T be a tree. If $n \ge 2 |V(T)| - 2$, then T is contained in some n-vertex A-iridescent tree.

Thus iridescence is not a "local" property.

 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

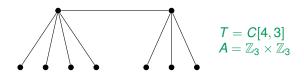
 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

Call the spine vertices u and v.



 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

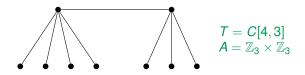
Theorem

```
Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form C[k, \ell] is A-iridescent iff k \not\equiv -1 \pmod{m}.
```

Proof.

Call the spine vertices u and v.

Suppose $k \equiv -1 \pmod{m}$; now $d(u) \equiv 0 \pmod{m}$.



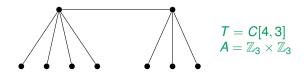
 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

Call the spine vertices u and v. Suppose $k \equiv -1 \pmod{m}$; now $d(u) \equiv 0 \pmod{m}$. Since d(u) + d(v) = n, also $d(v) \equiv 0 \pmod{m}$.



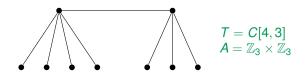
 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

Call the spine vertices u and v. Suppose $k \equiv -1 \pmod{m}$; now $d(u) \equiv 0 \pmod{m}$. Since $d(u) + d(v) \equiv n$, also $d(v) \equiv 0 \pmod{m}$. Every other vertex is a leaf, and has degree 1.



 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

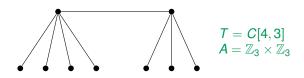
Theorem

Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

Call the spine vertices u and v. Suppose $k \equiv -1 \pmod{m}$; now $d(u) \equiv 0 \pmod{m}$. Since d(u) + d(v) = n, also $d(v) \equiv 0 \pmod{m}$. Every other vertex is a leaf, and has degree 1.

T satisfies our earlier condition for non-iridescence.



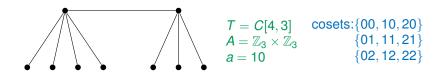
 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

Now suppose $k \not\equiv -1 \pmod{m}$. Choose $a \in A$ with order *m*; partition *A* into cosets of $\langle a \rangle$.



 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

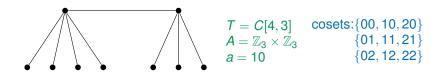
Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

Now suppose $k \not\equiv -1 \pmod{m}$.

Choose $a \in A$ with order *m*; partition *A* into cosets of $\langle a \rangle$.

Remove leaves in groups of *m*.



 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

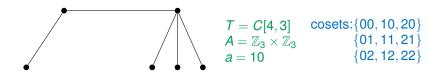
Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

Now suppose $k \not\equiv -1 \pmod{m}$.

Choose $a \in A$ with order *m*; partition *A* into cosets of $\langle a \rangle$.

Remove leaves in groups of *m*.



 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

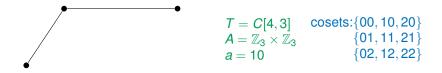
Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

Now suppose $k \not\equiv -1 \pmod{m}$.

Choose $a \in A$ with order *m*; partition *A* into cosets of $\langle a \rangle$.

Remove leaves in groups of *m*.



 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

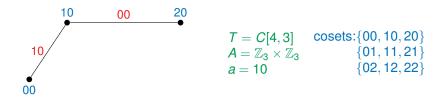
Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

Now suppose $k \not\equiv -1 \pmod{m}$.

Choose $a \in A$ with order *m*; partition *A* into cosets of $\langle a \rangle$.

Remove leaves in groups of *m*.



 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

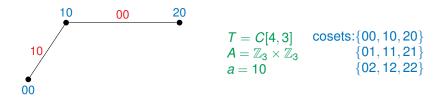
Now suppose $k \not\equiv -1 \pmod{m}$.

Choose $a \in A$ with order *m*; partition *A* into cosets of $\langle a \rangle$.

Remove leaves in groups of *m*.

This leaves an *m*-vertex caterpillar; label it with $\langle a \rangle$.

To each group of removed leaves, assign a coset.



 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

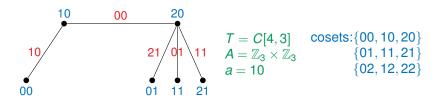
Now suppose $k \not\equiv -1 \pmod{m}$.

Choose $a \in A$ with order *m*; partition *A* into cosets of $\langle a \rangle$.

Remove leaves in groups of *m*.

This leaves an *m*-vertex caterpillar; label it with $\langle a \rangle$.

To each group of removed leaves, assign a coset.



 $C[h_1, \ldots, h_s]$: the caterpillar with *s* spine vertices, where the *i*th spine vertex has h_i pendant leaves.

Theorem

Let A be an Abelian group with order n and characteristic m. An n-vertex caterpillar T of the form $C[k, \ell]$ is A-iridescent iff $k \not\equiv -1 \pmod{m}$.

Proof.

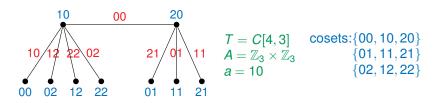
Now suppose $k \not\equiv -1 \pmod{m}$.

Choose $a \in A$ with order *m*; partition *A* into cosets of $\langle a \rangle$.

Remove leaves in groups of *m*.

This leaves an *m*-vertex caterpillar; label it with $\langle a \rangle$.

To each group of removed leaves, assign a coset.



Other small caterpillars:

Other small caterpillars:

Theorem Let *A* be an Abelian group with order *n* and characteristic *m*. Let *T* be an *n*-vertex caterpillar of the form $C[k, 0, \ell]$. *T* is *A*-iridescent if and only if $k \not\equiv -1 \pmod{m}$ and $\ell \not\equiv -1 \pmod{m}$.

Other small caterpillars:

Theorem

Let A be an Abelian group with order n and characteristic m. Let T be an n-vertex caterpillar of the form $C[k, 0, \ell]$. T is A-iridescent if and only if $k \not\equiv -1 \pmod{m}$ and $\ell \not\equiv -1 \pmod{m}$.

Theorem

Let A be an Abelian group with order n and characteristic m. Let T be an n-vertex caterpillar of the form $C[k, 0, 0, \ell]$. T fails to be A-iridescent iff either

- $k \equiv -2 \pmod{m}$, or
- ▶ T = C[n m 1, 0, 0, m 3] and $A = \mathbb{Z}_m^k$ for $k \ge 2$ and m an odd prime.

Computer-aided search for non-iridescent trees:

- checked all Abelian groups of order at most 20
- for each group, checked all trees of same order

Computer-aided search for non-iridescent trees:

- checked all Abelian groups of order at most 20
- for each group, checked all trees of same order

There aren't many non-iridescent trees! Most of the ones we found are $C[k, \ell]$, $C[k, 0, \ell]$, or $C[k, 0, 0, \ell]$.

Computer-aided search for non-iridescent trees:

- checked all Abelian groups of order at most 20
- for each group, checked all trees of same order

There aren't many non-iridescent trees! Most of the ones we found are $C[k, \ell]$, $C[k, 0, \ell]$, or $C[k, 0, 0, \ell]$.

Didn't find any counterexamples to Hovey's conjecture on cyclic groups. Didn't touch Boolean groups \mathbb{Z}_2^k ; Zheng has those covered.

Order 8: $\mathbb{Z}_4 \times \mathbb{Z}_2$

small caterpillars: C[3,3]

C[2, 0, 3]

C[2, 0, 0, 2]

Order 9: $\mathbb{Z}_3 \times \mathbb{Z}_3$

small caterpillars:	<i>C</i> [2,5]	C[1,0,5] C[2,0,4]	<i>C</i> [1,0,0,4]
misc. explained:	<i>C</i> [2, 1, 3]	<i>C</i> [1, 1, 0, 3]	<i>C</i> [2,0,0,0,2]

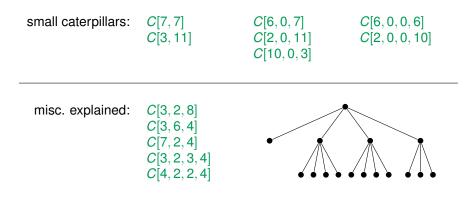
Order 12: $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

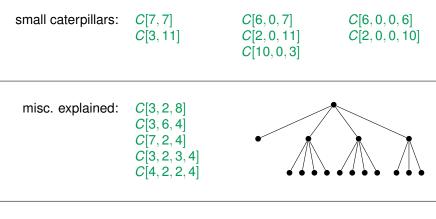
small caterpillars: C[5,5] C[5,0,4] C[4,0,0,4]

Order 16: $\mathbb{Z}_8 \times \mathbb{Z}_2$

small caterpillars: C[7,7] C[6,0,7] C[6,0,0,6]

Order 16: $\mathbb{Z}_4 \times \mathbb{Z}_4$





Order 18: $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_2$

small caterpillars: C[5, 11] C[4, 0, 11] C[5, 0, 10]

C[10, 0, 0, 4]

misc. explained: C[5, 4, 6]

Order 20: $\mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

small caterpillars: *C*[9,9]

C[8, 0, 9]

Things to look at:

Things to look at:

 \blacktriangleright "unexplained" trees for $\mathbb{Z}_4\times\mathbb{Z}_2\times\mathbb{Z}_2$

Things to look at:

 \blacktriangleright "unexplained" trees for $\mathbb{Z}_4\times\mathbb{Z}_2\times\mathbb{Z}_2$

more sufficient conditions for iridescence

Things to look at:

• "unexplained" trees for $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

more sufficient conditions for iridescence

general caterpillars

Thanks

Thank you!