Extending graph choosability results to paintability

Thomas Mahoney

University of Illinois at Urbana-Champaign tmahone2@math.uiuc.edu

Joint work with
James Carraher, Sarah Loeb,
Gregory J. Puleo, Mu-Tsun Tsai, and Douglas West;

Marker/Remover Game (Schauz [2009])

Two players: Marker and Remover on a graph G with a positive number of tokens on each vertex.

Marker/Remover Game (Schauz [2009])

Two players: Marker and Remover on a graph G with a positive number of tokens on each vertex.

Round: Marker marks a non-empty subset M of the vertices remaining in the graph.
This uses up one token from each marked vertex.

Marker/Remover Game (Schauz [2009])

Two players: Marker and Remover on a graph G with a positive number of tokens on each vertex.

Round: Marker marks a non-empty subset M of the vertices remaining in the graph.
This uses up one token from each marked vertex. Remover must remove a independent subset $R \subseteq M$. Vertices in R are removed from the graph.

Marker/Remover Game (Schauz [2009])

Two players: Marker and Remover on a graph G with a positive number of tokens on each vertex.

Round: Marker marks a non-empty subset M of the vertices remaining in the graph.
This uses up one token from each marked vertex. Remover must remove a independent subset $R \subseteq M$. Vertices in R are removed from the graph.

Goal: Marker wins by marking a vertex with no tokens. Remover wins by removing all vertices from the graph.

Marker/Remover Game (Schauz [2009])

Two players: Marker and Remover on a graph G with a positive number of tokens on each vertex.

Round: Marker marks a non-empty subset M of the vertices remaining in the graph.
This uses up one token from each marked vertex. Remover must remove a independent subset $R \subseteq M$. Vertices in R are removed from the graph.

Goal: Marker wins by marking a vertex with no tokens. Remover wins by removing all vertices from the graph.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Example Game

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Conclude: Marker has a winning strategy on this graph when each vertex has 2 tokens.

Definitions

Def. Given a graph G and a function $f: V(G) \rightarrow \mathbb{N}$ assigning tokens, we say G is f-paintable if Remover has a winning strategy in this game.

Definitions

Def. Given a graph G and a function $f: V(G) \rightarrow \mathbb{N}$ assigning tokens, we say G is f-paintable if Remover has a winning strategy in this game.

Def. If $f(v)=k$ for all $v \in V(G)$ and G is f-paintable, then we say G is k-paintable.

Definitions

Def. Given a graph G and a function $f: V(G) \rightarrow \mathbb{N}$ assigning tokens, we say G is f-paintable if Remover has a winning strategy in this game.

Def. If $f(v)=k$ for all $v \in V(G)$ and G is f-paintable, then we say G is k-paintable.

Def. The least such k for which this is true is the paintability or paint number of G and is denoted $\chi_{p}(G)$.

Relation to Chromatic Number

Obs. Sets removed by Remover form a proper coloring.

Relation to Chromatic Number

Obs. Sets removed by Remover form a proper coloring.
Prop. $\chi\left(C_{5}\right)=3$.
Ex. Consider the following strategy for Marker:

Relation to Chromatic Number

Obs. Sets removed by Remover form a proper coloring.
Prop. $\chi\left(C_{5}\right)=3$.
Ex. Consider the following strategy for Marker:

Relation to Chromatic Number

Obs. Sets removed by Remover form a proper coloring.
Prop. $\chi\left(C_{5}\right)=3$.
Ex. Consider the following strategy for Marker:

Relation to Chromatic Number

Obs. Sets removed by Remover form a proper coloring.
Prop. $\chi\left(C_{5}\right)=3$.
Ex. Consider the following strategy for Marker:

Relation to Chromatic Number

Obs. Sets removed by Remover form a proper coloring.
Prop. $\chi\left(C_{5}\right)=3$.
Ex. Consider the following strategy for Marker:

Relation to Chromatic Number

Obs. Sets removed by Remover form a proper coloring.
Prop. $\chi\left(C_{5}\right)=3$.
Ex. Consider the following strategy for Marker:

Relation to Chromatic Number

Obs. Sets removed by Remover form a proper coloring.
Prop. $\chi\left(C_{5}\right)=3$.
Ex. Consider the following strategy for Marker:

Obs. If Marker always marks all available vertices, then the least k such that Remover can win against this strategy is $\chi(G)$.

Graph Choosability (List Coloring)

Def. A list assignment L assigns to each vertex v a list $L(v)$ of available colors.

Graph Choosability (List Coloring)

Def. A list assignment L assigns to each vertex v a list $L(v)$ of available colors.

Def. A graph G is L-colorable if G has a proper coloring with the color on each vertex v chosen from $L(v)$.

Graph Choosability (List Coloring)

Def. A list assignment L assigns to each vertex v a list $L(v)$ of available colors.

Def. A graph G is L-colorable if G has a proper coloring with the color on each vertex v chosen from $L(v)$.

Def. A graph G is k-choosable if G is L-colorable for every L such that $L(v) \geq k$ for all v.

Graph Choosability (List Coloring)

Def. A list assignment L assigns to each vertex v a list $L(v)$ of available colors.

Def. A graph G is L-colorable if G has a proper coloring with the color on each vertex v chosen from $L(v)$.

Def. A graph G is k-choosable if G is L-colorable for every L such that $L(v) \geq k$ for all v.

Def. The least such k for which this is true is the choosability of G and is denoted $\chi_{l}(G)$.

Choosability Example

Obs. If $L(v)=\{1, \ldots, k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \leq \chi_{\ell}(G)$.

Choosability Example

Obs. If $L(v)=\{1, \ldots, k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \leq \chi_{\ell}(G)$.

Obs. $\chi_{\ell}(G)$ may exceed $\chi(G)$, shown by $G=K_{3,3}$.

Choosability Example

Obs. If $L(v)=\{1, \ldots, k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \leq \chi_{\ell}(G)$.

Obs. $\chi_{\ell}(G)$ may exceed $\chi(G)$, shown by $G=K_{3,3}$.

Choosability Example

Obs. If $L(v)=\{1, \ldots, k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \leq \chi_{\ell}(G)$.

Obs. $\chi_{\ell}(G)$ may exceed $\chi(G)$, shown by $G=K_{3,3}$.

$$
\chi\left(K_{3,3}\right)=2
$$

Choosability Example

Obs. If $L(v)=\{1, \ldots, k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \leq \chi_{\ell}(G)$.

Obs. $\chi_{\ell}(G)$ may exceed $\chi(G)$, shown by $G=K_{3,3}$.

$$
\chi\left(K_{3,3}\right)=2
$$

Choosability Example

Obs. If $L(v)=\{1, \ldots, k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \leq \chi_{\ell}(G)$.

Obs. $\chi_{\ell}(G)$ may exceed $\chi(G)$, shown by $G=K_{3,3}$.

$$
\chi\left(K_{3,3}\right)=2
$$

$$
\chi_{\ell}\left(K_{3,3}\right)>2
$$

Relation to Choosability

Ex. Consider the same example for paintability.

Relation to Choosability

Ex. Consider the same example for paintability.

Relation to Choosability

Ex. Consider the same example for paintability.

Relation to Choosability

Ex. Consider the same example for paintability.

Relation to Choosability

Ex. Consider the same example for paintability.

Relation to Choosability

Ex. Consider the same example for paintability.

Relation to Choosability

Ex. Consider the same example for paintability.

Relation to Choosability

Ex. Consider the same example for paintability.
Obs. If Marker's strategy mimics list assignments by marking vertices whose list has color i on the ith round, then the least k such that Remover has a winning strategy against all L having list of size k is $\chi_{\ell}(G)$.

Modeling Coloring Problems

Obs. Natural inequalities $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ hold.

Modeling Coloring Problems

Obs. Natural inequalities $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ hold.

Obs. The first inequality may be strict, shown by $K_{3,3}$.

Modeling Coloring Problems

Obs. Natural inequalities $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ hold.

Obs. The first inequality may be strict, shown by $K_{3,3}$.

Prop. (Erdős-Rubin-Taylor [1976]) $\chi_{\ell}\left(\Theta_{2,2,2 n}\right)=2$.

Modeling Coloring Problems

Obs. Natural inequalities $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ hold.

Obs. The first inequality may be strict, shown by $K_{3,3}$.
Prop. (Erdős-Rubin-Taylor [1976]) $\chi_{\ell}\left(\Theta_{2,2,2 n}\right)=2$.
Cor. We showed earlier that $\chi_{p}\left(\Theta_{2,2,4}\right)>2$, thus the second inequality may also be strict.

Modeling Coloring Problems

Obs. Natural inequalities $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ hold.

Obs. The first inequality may be strict, shown by $K_{3,3}$.
Prop. (Erdős-Rubin-Taylor [1976]) $\chi_{\ell}\left(\Theta_{2,2,2 n}\right)=2$.

Cor. We showed earlier that $\chi_{p}\left(\Theta_{2,2,4}\right)>2$, thus the second inequality may also be strict.

Obs. The "list maker" could make all lists the same, but it's not the only option.

Modeling Coloring Problems

Obs. Natural inequalities $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ hold.

Obs. The first inequality may be strict, shown by $K_{3,3}$.
Prop. (Erdős-Rubin-Taylor [1976]) $\chi_{\ell}\left(\Theta_{2,2,2 n}\right)=2$.

Cor. We showed earlier that $\chi_{p}\left(\Theta_{2,2,4}\right)>2$, thus the second inequality may also be strict.

Obs. The "list maker" could make all lists the same, but it's not the only option.

Obs. Similarly, Marker could list moves ahead of time, but an adaptive strategy may be better.

Background

Paintability and the Marker/Remover game were introduced by Schauz [2009].

Independently introduced by Zhu [2009] as on-line list coloring.

Background

Paintability and the Marker/Remover game were introduced by Schauz [2009].

Independently introduced by Zhu [2009] as on-line list coloring.
Some coloring upper bounds also hold for list coloring, strengthening the result. Similarly, some list coloring upper bounds hold for paintability.

Background

Paintability and the Marker/Remover game were introduced by Schauz [2009].

Independently introduced by Zhu [2009] as on-line list coloring.
Some coloring upper bounds also hold for list coloring, strengthening the result. Similarly, some list coloring upper bounds hold for paintability.

- Brooks' Theorem: $\chi(G) \leq \Delta(G)$ (usually...) (Brooks [1941], Vizing [1976], Hladký-Král-Schauz [2010])

Background

Paintability and the Marker/Remover game were introduced by Schauz [2009].

Independently introduced by Zhu [2009] as on-line list coloring.
Some coloring upper bounds also hold for list coloring, strengthening the result. Similarly, some list coloring upper bounds hold for paintability.

- Brooks' Theorem: $\chi(G) \leq \Delta(G)$ (usually...) (Brooks [1941], Vizing [1976], Hladký-Král-Schauz [2010])
- Alon-Tarsi Theorem: Exact same hypothesis gives same bound for paintability. (Alon-Tarsi [1992], Schauz [2010])

Background

Paintability and the Marker/Remover game were introduced by Schauz [2009].

Independently introduced by Zhu [2009] as on-line list coloring.
Some coloring upper bounds also hold for list coloring, strengthening the result. Similarly, some list coloring upper bounds hold for paintability.

- Brooks' Theorem: $\chi(G) \leq \Delta(G)$ (usually...) (Brooks [1941], Vizing [1976], Hladký-Král-Schauz [2010])
- Alon-Tarsi Theorem: Exact same hypothesis gives same bound for paintability. (Alon-Tarsi [1992], Schauz [2010])
- Planar Graphs: $\chi_{\ell}(G) \leq \chi_{p}(G) \leq 5$ if G is planar (Thomassen [1994], Schauz [2009])

Ohba's Conjecture

Def. A graph G is chromatic-choosable if $\chi(G)=\chi_{\ell}(G)$.

Ohba's Conjecture

Def. A graph G is chromatic-choosable if $\chi(G)=\chi_{\ell}(G)$.
Def. A graph G is chromatic-paintable if $\chi(G)=\chi_{p}(G)$.

Ohba's Conjecture

Def. A graph G is chromatic-choosable if $\chi(G)=\chi_{\ell}(G)$.
Def. A graph G is chromatic-paintable if $\chi(G)=\chi_{p}(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots \text {) }}$

Ohba's Conjecture

Def. A graph G is chromatic-choosable if $\chi(G)=\chi_{\ell}(G)$.
Def. A graph G is chromatic-paintable if $\chi(G)=\chi_{p}(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots}$)

Conj. (Kim-Kwon-Liu-Zhu [2012]) If $|V(G)| \leq 2 \chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2, \ldots}$)

Ohba's Conjecture

Def. A graph G is chromatic-choosable if $\chi(G)=\chi_{\ell}(G)$.
Def. A graph G is chromatic-paintable if $\chi(G)=\chi_{p}(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots \text {) }}$

Conj. (Kim-Kwon-Liu-Zhu [2012]) If $|V(G)| \leq 2 \chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2, \ldots}$)

Obs. Suffices to look at complete multipartite graphs.

Ohba's Conjecture

Def. A graph G is chromatic-choosable if $\chi(G)=\chi_{\ell}(G)$.
Def. A graph G is chromatic-paintable if $\chi(G)=\chi_{p}(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots \text {) }}$

Conj. (Kim-Kwon-Liu-Zhu [2012]) If $|V(G)| \leq 2 \chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2, \ldots}$)

Obs. Suffices to look at complete multipartite graphs.
We denote the complete r-partite graph with all part sizes 2 with $K_{2 * r}$.

Ohba's Conjecture

Def. A graph G is chromatic-choosable if $\chi(G)=\chi_{\ell}(G)$. Def. A graph G is chromatic-paintable if $\chi(G)=\chi_{p}(G)$.

Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots \text {) }}$

Conj. (Kim-Kwon-Liu-Zhu [2012]) If $|V(G)| \leq 2 \chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2, \ldots}$)

Obs. Suffices to look at complete multipartite graphs.
We denote the complete r-partite graph with all part sizes 2 with $K_{2 * r}$.

Thm. (ERT [1976]) The complement of a matching is chromatic-choosable, i.e. $\chi_{\ell}\left(K_{2 * r}\right)=r$.

Ohba's Conjecture

Def. A graph G is chromatic-choosable if $\chi(G)=\chi_{\ell}(G)$. Def. A graph G is chromatic-paintable if $\chi(G)=\chi_{p}(G)$.

Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots}$)

Conj. (Kim-Kwon-Liu-Zhu [2012]) If $|V(G)| \leq 2 \chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2, \ldots}$)

Obs. Suffices to look at complete multipartite graphs.
We denote the complete r-partite graph with all part sizes 2 with $K_{2 * r}$.

Thm. (ERT [1976]) The complement of a matching is chromatic-choosable, i.e. $\chi_{\ell}\left(K_{2 * r}\right)=r$.

Ques. What analogous bounds hold for paintability?

The Join Operation

Def. The join of graphs G and H, denoted $G \nLeftarrow H$, is obtained from the disjoint union $G+H$ by adding edges joining all of $V(G)$ to all of $V(H)$.

The Join Operation

Def. The join of graphs G and H, denoted $G \nLeftarrow H$, is obtained from the disjoint union $G+H$ by adding edges joining all of $V(G)$ to all of $V(H)$.

Thm. If a graph G is k-paintable and $|V(G)| \leq \frac{t}{t-1} k$, then $G \ominus \overline{K_{t}}$ is $(k+1)$-paintable.

The Join Operation

Def. The join of graphs G and H, denoted $G \nLeftarrow H$, is obtained from the disjoint union $G+H$ by adding edges joining all of $V(G)$ to all of $V(H)$.

Thm. If a graph G is k-paintable and $|V(G)| \leq \frac{t}{t-1} k$, then $G \ominus \overline{K_{t}}$ is $(k+1)$-paintable.

This provides an alternative proof of a known result:
Cor. (KKLZ [2012]) For all $r, K_{2 * r}$ is chromatic-paintable.

The Join Operation

Def. The join of graphs G and H, denoted $G \nLeftarrow H$, is obtained from the disjoint union $G+H$ by adding edges joining all of $V(G)$ to all of $V(H)$.

Thm. If a graph G is k-paintable and $|V(G)| \leq \frac{t}{t-1} k$, then $G \ominus \overline{K_{t}}$ is $(k+1)$-paintable.

This provides an alternative proof of a known result:
Cor. (KKLZ [2012]) For all $r, K_{2 * r}$ is chromatic-paintable.

Thm. For any graph G, there exists $t_{0} \in \mathbb{N}$ such that if $t>t_{0}$, then $G \nLeftarrow K_{t}$ is chromatic-paintable.

Complete Bipartite Graphs

Def. let $K_{\ell, r}$ be the complete bipartite graph with parts $L=\left\{v_{1}, \ldots, v_{\ell}\right\}$ and $R=\left\{u_{1}, \ldots, u_{r}\right\}$.

Complete Bipartite Graphs

Def. let $K_{\ell, r}$ be the complete bipartite graph with parts $L=\left\{v_{1}, \ldots, v_{\ell}\right\}$ and $R=\left\{u_{1}, \ldots, u_{r}\right\}$.

Thm. (ERT [1976]) $K_{\ell, r}$ is ℓ-choosable $\Leftrightarrow r<\ell^{\ell}$.

Complete Bipartite Graphs

Def. let $K_{\ell, r}$ be the complete bipartite graph with parts $L=\left\{v_{1}, \ldots, v_{\ell}\right\}$ and $R=\left\{u_{1}, \ldots, u_{r}\right\}$.

Thm. (ERT [1976]) $K_{\ell, r}$ is ℓ-choosable $\Leftrightarrow r<\ell^{\ell}$.

Lem. If each $u_{j} \in R$ has ℓ tokens, then Remover has a winning strategy in $K_{\ell, r}$ if and only if $r<\prod e_{i}$ where e_{i} is the number of tokens on $v_{i} \in L$.

Complete Bipartite Graphs

Def. let $K_{\ell, r}$ be the complete bipartite graph with parts $L=\left\{v_{1}, \ldots, v_{\ell}\right\}$ and $R=\left\{u_{1}, \ldots, u_{r}\right\}$.

Thm. (ERT [1976]) $K_{\ell, r}$ is ℓ-choosable $\Leftrightarrow r<\ell^{\ell}$.

Lem. If each $u_{j} \in R$ has ℓ tokens, then Remover has a winning strategy in $K_{\ell, r}$ if and only if $r<\prod e_{i}$ where e_{i} is the number of tokens on $v_{i} \in L$.

Cor. $K_{\ell, r}$ is ℓ-paintable $\Leftrightarrow r<\ell^{\ell}$.

Complete Bipartite Graphs

Def. let $K_{\ell, r}$ be the complete bipartite graph with parts $L=\left\{v_{1}, \ldots, v_{\ell}\right\}$ and $R=\left\{u_{1}, \ldots, u_{r}\right\}$.

Thm. (ERT [1976]) $K_{\ell, r}$ is ℓ-choosable $\Leftrightarrow r<\ell^{\ell}$.

Lem. If each $u_{j} \in R$ has ℓ tokens, then Remover has a winning strategy in $K_{\ell, r}$ if and only if $r<\prod e_{i}$ where e_{i} is the number of tokens on $v_{i} \in L$.

Cor. $K_{\ell, r}$ is ℓ-paintable $\Leftrightarrow r<\ell^{\ell}$.

Cor. Later, we apply this to $K_{2, r}$ in a different setting.

Complete Bipartite Graphs

Def. let $K_{\ell, r}$ be the complete bipartite graph with parts $L=\left\{v_{1}, \ldots, v_{\ell}\right\}$ and $R=\left\{u_{1}, \ldots, u_{r}\right\}$.

Thm. (ERT [1976]) $K_{\ell, r}$ is ℓ-choosable $\Leftrightarrow r<\ell^{\ell}$.

Lem. If each $u_{j} \in R$ has ℓ tokens, then Remover has a winning strategy in $K_{\ell, r}$ if and only if $r<\prod e_{i}$ where e_{i} is the number of tokens on $v_{i} \in L$.

Cor. $K_{\ell, r}$ is ℓ-paintable $\Leftrightarrow r<\ell^{\ell}$.

Cor. Later, we apply this to $K_{2, r}$ in a different setting.

Obs. Determining when $K_{\ell, r}$ is $(\ell-1)$-paintable is different and more complicated than $(\ell-1)$-choosable.

Sum-Choosability and Sum-Paintability

Obs. When G is k-choosable, giving k-lists to each vertex uses $k|V(G)|$ labels in total.

Sum-Choosability and Sum-Paintability

Obs. When G is k-choosable, giving k-lists to each vertex uses $k|V(G)|$ labels in total.

Def. (Isaak [2002]) The sum-choosability of a graph G, denoted $\chi_{s c}(G)$, is the least r such that G is f-choosable for some list assignment f with sum r.

Sum-Choosability and Sum-Paintability

Obs. When G is k-choosable, giving k-lists to each vertex uses $k|V(G)|$ labels in total.

Def. (Isaak [2002]) The sum-choosability of a graph G, denoted $\chi_{s c}(G)$, is the least r such that G is f-choosable for some list assignment f with sum r.

Obs. Suppose Remover has a budget of tokens instead of having k tokens at each vertex. Some vertices may be more dangerous and require more tokens.

Sum-Choosability and Sum-Paintability

Obs. When G is k-choosable, giving k-lists to each vertex uses $k|V(G)|$ labels in total.

Def. (Isaak [2002]) The sum-choosability of a graph G, denoted $\chi_{s c}(G)$, is the least r such that G is f-choosable for some list assignment f with sum r.

Obs. Suppose Remover has a budget of tokens instead of having k tokens at each vertex. Some vertices may be more dangerous and require more tokens.

Def. The sum-paintability of a graph G, denoted $\chi_{s p}(G)$, is the least r such that Remover has a winning strategy for some allocation of r tokens to $V(G)$.

Sum-Choosability and Sum-Paintability

Obs. When G is k-choosable, giving k-lists to each vertex uses $k|V(G)|$ labels in total.

Def. (Isaak [2002]) The sum-choosability of a graph G, denoted $\chi_{s c}(G)$, is the least r such that G is f-choosable for some list assignment f with sum r.

Obs. Suppose Remover has a budget of tokens instead of having k tokens at each vertex. Some vertices may be more dangerous and require more tokens.

Def. The sum-paintability of a graph G, denoted $\chi_{s p}(G)$, is the least r such that Remover has a winning strategy for some allocation of r tokens to $V(G)$.

Obs. The natural inequality $\chi_{s c}(G) \leq \chi_{s p}(G)$ holds.

Graph Augmentations

Lem. Adding a leaf to G increases $\chi_{s p}(G)$ by 2 . When $e \geq 3$, adding an ear with e edges increases
$\chi_{s p}(G)$ by $2 e-1$.

Graph Augmentations

Lem. Adding a leaf to G increases $\chi_{s p}(G)$ by 2. When $e \geq 3$, adding an ear with e edges increases
$\chi_{s p}(G)$ by $2 e-1$.
Lem. $\chi_{s p}\left(K_{2, r}\right)=\chi_{s c}\left(K_{2, r}\right)=2 r+\min \{s+t: s t>r\}$.

Graph Augmentations

Lem. Adding a leaf to G increases $\chi_{s p}(G)$ by 2. When $e \geq 3$, adding an ear with e edges increases $\chi_{s p}(G)$ by $2 e-1$.

Lem. $\chi_{s p}\left(K_{2, r}\right)=\chi_{s c}\left(K_{2, r}\right)=2 r+\min \{s+t: s t>r\}$.
Pf. Lower bound comes from $\chi_{s c}\left(K_{2, r}\right)$ (BBBD [2006]).

Graph Augmentations

Lem. Adding a leaf to G increases $\chi_{s p}(G)$ by 2. When $e \geq 3$, adding an ear with e edges increases $\chi_{s p}(G)$ by $2 e-1$.

Lem. $\chi_{s p}\left(K_{2, r}\right)=\chi_{s c}\left(K_{2, r}\right)=2 r+\min \{s+t: s t>r\}$.
Pf. Lower bound comes from $\chi_{s c}\left(K_{2, r}\right)$ (BBBD [2006]). Apply the earlier Lemma about $K_{\ell, r}$:

Graph Augmentations

Lem. Adding a leaf to G increases $\chi_{s p}(G)$ by 2. When $e \geq 3$, adding an ear with e edges increases $\chi_{s p}(G)$ by $2 e-1$.

Lem. $\chi_{s p}\left(K_{2, r}\right)=\chi_{s c}\left(K_{2, r}\right)=2 r+\min \{s+t: s t>r\}$.
Pf. Lower bound comes from $\chi_{s c}\left(K_{2, r}\right)$ (BBBD [2006]). Apply the earlier Lemma about $K_{\ell, r}$:

- s and t tokens on the left vertices.

Graph Augmentations

Lem. Adding a leaf to G increases $\chi_{s p}(G)$ by 2. When $e \geq 3$, adding an ear with e edges increases $\chi_{s p}(G)$ by $2 e-1$.

Lem. $\chi_{s p}\left(K_{2, r}\right)=\chi_{s c}\left(K_{2, r}\right)=2 r+\min \{s+t: s t>r\}$.
Pf. Lower bound comes from $\chi_{s c}\left(K_{2, r}\right)$ (BBBD [2006]). Apply the earlier Lemma about $K_{\ell, r}$:

- s and t tokens on the left vertices.
- 2 tokens on each vertex on the right.

Graph Augmentations

Lem. Adding a leaf to G increases $\chi_{s p}(G)$ by 2 .
When $e \geq 3$, adding an ear with e edges increases
$\chi_{s p}(G)$ by $2 e-1$.
Lem. $\chi_{s p}\left(K_{2, r}\right)=\chi_{s c}\left(K_{2, r}\right)=2 r+\min \{s+t: s t>r\}$.
Pf. Lower bound comes from $\chi_{s c}\left(K_{2, r}\right)$ (BBBD [2006]). Apply the earlier Lemma about $K_{\ell, r}$:

- s and t tokens on the left vertices.
- 2 tokens on each vertex on the right.

When st >r, Remover wins, proving the upper bound.

Graph Augmentations

Lem. Adding a leaf to G increases $\chi_{s p}(G)$ by 2 .
When $e \geq 3$, adding an ear with e edges increases
$\chi_{s p}(G)$ by $2 e-1$.
Lem. $\chi_{s p}\left(K_{2, r}\right)=\chi_{s c}\left(K_{2, r}\right)=2 r+\min \{s+t: s t>r\}$.
Pf. Lower bound comes from $\chi_{s c}\left(K_{2, r}\right)$ (BBBD [2006]). Apply the earlier Lemma about $K_{\ell, r}$:

- s and t tokens on the left vertices.
- 2 tokens on each vertex on the right.

When st $>r$, Remover wins, proving the upper bound.
Def. The generalized theta-graph, denoted $\Theta_{k_{1}, \ldots, k_{n}}$, consists of a pair of vertices joined by n internally disjoint paths of lengths k_{1}, \ldots, k_{n} with each $k_{i} \geq 2$.

Graph Augmentations

Lem. Adding a leaf to G increases $\chi_{s p}(G)$ by 2 .
When $e \geq 3$, adding an ear with e edges increases
$\chi_{s p}(G)$ by $2 e-1$.
Lem. $\chi_{s p}\left(K_{2, r}\right)=\chi_{s c}\left(K_{2, r}\right)=2 r+\min \{s+t: s t>r\}$.
Pf. Lower bound comes from $\chi_{s c}\left(K_{2, r}\right)$ (BBBD [2006]). Apply the earlier Lemma about $K_{\ell, r}$:

- s and t tokens on the left vertices.
- 2 tokens on each vertex on the right.

When st $>r$, Remover wins, proving the upper bound.
Def. The generalized theta-graph, denoted $\Theta_{k_{1}, \ldots, k_{n}}$, consists of a pair of vertices joined by n internally disjoint paths of lengths k_{1}, \ldots, k_{n} with each $k_{i} \geq 2$.

Cor. These Lemmas determine the sum-paintability of generalized theta-graphs.

Greedy Graphs

Obs. Let $b(G)=|V(G)|+|E(G)|$.
For any graph $G, \chi_{s c}(G) \leq \chi_{s p}(G) \leq b(G)$.

Greedy Graphs

Obs. Let $b(G)=|V(G)|+|E(G)|$.
For any graph $G, \chi_{s c}(G) \leq \chi_{s p}(G) \leq b(G)$.
Def. We say a graph G is sc-greedy if $\chi_{s c}(G)=b(G)$.

Greedy Graphs

Obs. Let $b(G)=|V(G)|+|E(G)|$.
For any graph $G, \chi_{s c}(G) \leq \chi_{s p}(G) \leq b(G)$.
Def. We say a graph G is sc-greedy if $\chi_{s c}(G)=b(G)$.
Thm. (Isaak [2004]) If each block in G is sc-greedy, then G is sc-greedy.

Thm. (BBBD [2006]) Cycles, trees, complete graphs, and line graphs of trees are all sc-greedy.

Greedy Graphs

Obs. Let $b(G)=|V(G)|+|E(G)|$.
For any graph $G, \chi_{s c}(G) \leq \chi_{s p}(G) \leq b(G)$.
Def. We say a graph G is sc-greedy if $\chi_{s c}(G)=b(G)$.
Thm. (Isaak [2004]) If each block in G is sc-greedy, then G is sc-greedy.

Thm. (BBBD [2006]) Cycles, trees, complete graphs, and line graphs of trees are all sc-greedy.

Def. We say a graph G is sp-greedy if $\chi_{s p}(G)=b(G)$.

Greedy Graphs

Obs. Let $b(G)=|V(G)|+|E(G)|$.
For any graph $G, \chi_{s c}(G) \leq \chi_{s p}(G) \leq b(G)$.
Def. We say a graph G is sc-greedy if $\chi_{s c}(G)=b(G)$.
Thm. (Isaak [2004]) If each block in G is sc-greedy, then G is sc-greedy.

Thm. (BBBD [2006]) Cycles, trees, complete graphs, and line graphs of trees are all sc-greedy.

Def. We say a graph G is sp-greedy if $\chi_{s p}(G)=b(G)$.
Ques. What larger families of graphs are sp-greedy?

Greedy Graphs

Obs. Let $b(G)=|V(G)|+|E(G)|$.
For any graph $G, \chi_{s c}(G) \leq \chi_{s p}(G) \leq b(G)$.
Def. We say a graph G is sc-greedy if $\chi_{s c}(G)=b(G)$.
Thm. (Isaak [2004]) If each block in G is sc-greedy, then G is sc-greedy.

Thm. (BBBD [2006]) Cycles, trees, complete graphs, and line graphs of trees are all sc-greedy.

Def. We say a graph G is sp-greedy if $\chi_{s p}(G)=b(G)$.
Ques. What larger families of graphs are sp-greedy?
Obs. Adding leaves and ears of length at least 3 to an sp-greedy graph creates another sp-greedy graph.

Fans

Outerplanar graphs and chordal graphs were considered, but Heinold [2006] showed examples in each family that are not sc-greedy.

Fans

Outerplanar graphs and chordal graphs were considered, but Heinold [2006] showed examples in each family that are not sc-greedy.

Def. For $n \geq 3$, the n-fan is $P_{n-1} \not K_{1}$.

Fans

Outerplanar graphs and chordal graphs were considered, but Heinold [2006] showed examples in each family that are not sc-greedy.

Def. For $n \geq 3$, the n-fan is $P_{n-1} \nLeftarrow K_{1}$.

Thm. (Heinold [2006]) If G is an n-fan, then
$\chi_{s c}(G) \leq b(G)-\left\lfloor\frac{n}{11}\right\rfloor$.

Fans

Outerplanar graphs and chordal graphs were considered, but Heinold [2006] showed examples in each family that are not sc-greedy.

Def. For $n \geq 3$, the n-fan is $P_{n-1} \not K_{1}$.

Thm. (Heinold [2006]) If G is an n-fan, then
$\chi_{s c}(G) \leq b(G)-\left\lfloor\frac{n}{11}\right\rfloor$.

Thm. If G is an n-fan, then G is sp-greedy.

Fans

Outerplanar graphs and chordal graphs were considered, but Heinold [2006] showed examples in each family that are not sc-greedy.

Def. For $n \geq 3$, the n-fan is $P_{n-1} \oplus K_{1}$.

Thm. (Heinold [2006]) If G is an n-fan, then
$\chi_{s c}(G) \leq b(G)-\left\lfloor\frac{n}{11}\right\rfloor$.

Thm. If G is an n-fan, then G is sp-greedy.

Cor. $\chi_{s p}(G)-\chi_{s c}(G)$ can be arbitrarily large.

Open Questions

Ques. Can $\chi_{p}(G)-\chi_{\ell}(G)>1$? If so, by how much?

Open Questions

Ques. Can $\chi_{p}(G)-\chi_{\ell}(G)>1$? If so, by how much?

Ques. When is $K_{\ell+t, r} \ell$-paintable for $t \geq 1$?

Open Questions

Ques. Can $\chi_{p}(G)-\chi_{\ell}(G)>1$? If so, by how much?

Ques. When is $K_{\ell+t, r} \ell$-paintable for $t \geq 1$?

Ques. Are all outerplanar graphs sp-greedy?

Open Questions

Ques. Can $\chi_{p}(G)-\chi_{\ell}(G)>1$? If so, by how much?

Ques. When is $K_{\ell+t, r} \ell$-paintable for $t \geq 1$?

Ques. Are all outerplanar graphs sp-greedy?

Ques. Are all chordal graphs graphs sp-greedy?

Open Questions

Ques. Can $\chi_{p}(G)-\chi_{\ell}(G)>1$? If so, by how much?

Ques. When is $K_{\ell+t, r} \ell$-paintable for $t \geq 1$?

Ques. Are all outerplanar graphs sp-greedy?

Ques. Are all chordal graphs graphs sp-greedy?

Ques. What other choosability results hold for paintability?

