Extending graph choosability results to paintability

Thomas Mahoney

University of Illinois at Urbana-Champaign tmahone2@math.uiuc.edu

Joint work with James Carraher, Sarah Loeb, Gregory J. Puleo, Mu-Tsun Tsai, and Douglas West;

Two players: Marker and Remover on a graph *G* with a positive number of tokens on each vertex.

Two players: Marker and Remover on a graph *G* with a positive number of tokens on each vertex.

Round: Marker marks a non-empty subset *M* of the vertices remaining in the graph. This uses up one token from each marked vertex.

Two players: Marker and Remover on a graph *G* with a positive number of tokens on each vertex.

Round: Marker marks a non-empty subset *M* of the vertices remaining in the graph. This uses up one token from each marked vertex.

Remover must remove a independent subset $R \subseteq M$. Vertices in R are removed from the graph.

Two players: Marker and Remover on a graph *G* with a positive number of tokens on each vertex.

Round: Marker marks a non-empty subset *M* of the vertices remaining in the graph. This uses up one token from each marked vertex.

Remover must remove a independent subset $R \subseteq M$. Vertices in R are removed from the graph.

Goal: Marker wins by marking a vertex with no tokens. Remover wins by removing all vertices from the graph.

Two players: Marker and Remover on a graph *G* with a positive number of tokens on each vertex.

Round: Marker marks a non-empty subset *M* of the vertices remaining in the graph. This uses up one token from each marked vertex.

Remover must remove a independent subset $R \subseteq M$. Vertices in R are removed from the graph.

Goal: Marker wins by marking a vertex with no tokens. Remover wins by removing all vertices from the graph.

Let's play the Marker/Remover game on $\Theta_{2,2,4}$.

Conclude: Marker has a winning strategy on this graph when each vertex has 2 tokens.

Definitions

Def. Given a graph *G* and a function $f : V(G) \rightarrow \mathbb{N}$ assigning tokens, we say *G* is *f*-paintable if Remover has a winning strategy in this game.

Definitions

Def. Given a graph *G* and a function $f : V(G) \rightarrow \mathbb{N}$ assigning tokens, we say *G* is *f*-paintable if Remover has a winning strategy in this game.

Def. If f(v) = k for all $v \in V(G)$ and G is *f*-paintable, then we say G is *k*-paintable.

Definitions

Def. Given a graph *G* and a function $f : V(G) \rightarrow \mathbb{N}$ assigning tokens, we say *G* is *f*-paintable if Remover has a winning strategy in this game.

Def. If f(v) = k for all $v \in V(G)$ and G is *f*-paintable, then we say G is *k*-paintable.

Def. The least such k for which this is true is the paintability or paint number of G and is denoted $\chi_p(G)$.

Obs. Sets removed by Remover form a proper coloring.

Obs. Sets removed by Remover form a proper coloring.

Prop. $\chi(C_5) = 3$.

Obs. Sets removed by Remover form a proper coloring.

Prop. $\chi(C_5) = 3$.

Obs. Sets removed by Remover form a proper coloring.

Prop. $\chi(C_5) = 3$.

Obs. Sets removed by Remover form a proper coloring.

Prop. $\chi(C_5) = 3$.

Obs. Sets removed by Remover form a proper coloring.

Prop. $\chi(C_5) = 3$.

Obs. Sets removed by Remover form a proper coloring.

Prop. $\chi(C_5) = 3$.

Obs. Sets removed by Remover form a proper coloring.

Prop. $\chi(C_5) = 3$.

Ex. Consider the following strategy for Marker:

Obs. If Marker always marks all available vertices, then the least k such that Remover can win against this strategy is $\chi(G)$.

Def. A list assignment *L* assigns to each vertex v a list L(v) of available colors.

Def. A list assignment *L* assigns to each vertex v a list L(v) of available colors.

Def. A graph G is *L*-colorable if G has a proper coloring with the color on each vertex v chosen from L(v).

Def. A list assignment *L* assigns to each vertex v a list L(v) of available colors.

Def. A graph G is *L*-colorable if G has a proper coloring with the color on each vertex v chosen from L(v).

Def. A graph G is k-choosable if G is L-colorable for every L such that $L(v) \ge k$ for all v.

Def. A list assignment *L* assigns to each vertex v a list L(v) of available colors.

Def. A graph G is *L*-colorable if G has a proper coloring with the color on each vertex v chosen from L(v).

Def. A graph G is k-choosable if G is L-colorable for every L such that $L(v) \ge k$ for all v.

Def. The least such k for which this is true is the choosability of G and is denoted $\chi_{\ell}(G)$.

Choosability Example

Obs. If $L(v) = \{1, ..., k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \le \chi_{\ell}(G)$.
Obs. If $L(v) = \{1, ..., k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \le \chi_{\ell}(G)$.

Obs. $\chi_{\ell}(G)$ may exceed $\chi(G)$, shown by $G = K_{3,3}$.

Obs. If $L(v) = \{1, ..., k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \le \chi_{\ell}(G)$.

Obs. $\chi_{\ell}(G)$ may exceed $\chi(G)$, shown by $G = K_{3,3}$.

Obs. If $L(v) = \{1, ..., k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \le \chi_{\ell}(G)$.

Obs. $\chi_{\ell}(G)$ may exceed $\chi(G)$, shown by $G = K_{3,3}$. $\chi(K_{3,3}) = 2$

Obs. If $L(v) = \{1, ..., k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \le \chi_{\ell}(G)$.

Obs. $\chi_{\ell}(G)$ may exceed $\chi(G)$, shown by $G = K_{3,3}$.

 $\chi(K_{3,3}) = 2$

Obs. If $L(v) = \{1, ..., k\}$ for all $v \in V(G)$, then the least such k for which G is L-colorable is $\chi(G)$, thus $\chi(G) \le \chi_{\ell}(G)$.

Obs. $\chi_{\ell}(G)$ may exceed $\chi(G)$, shown by $G = K_{3,3}$. $\chi(K_{3,3}) = 2$ $\chi_{\ell}(K_{3,3}) > 2$

Ex. Consider the same example for paintability.

Obs. If Marker's strategy mimics list assignments by marking vertices whose list has color *i* on the *i*th round, then the least *k* such that Remover has a winning strategy against all *L* having list of size *k* is $\chi_{\ell}(G)$.

Obs. Natural inequalities $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ hold.

Obs. Natural inequalities $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ hold.

Obs. The first inequality may be strict, shown by $K_{3,3}$.

Obs. Natural inequalities $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ hold.

Obs. The first inequality may be strict, shown by $K_{3,3}$.

Prop. (Erdős–Rubin–Taylor [1976]) $\chi_{\ell}(\Theta_{2,2,2n}) = 2$.

Obs. Natural inequalities $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ hold.

Obs. The first inequality may be strict, shown by $K_{3,3}$.

Prop. (Erdős–Rubin–Taylor [1976]) $\chi_{\ell}(\Theta_{2,2,2n}) = 2$.

Cor. We showed earlier that $\chi_p(\Theta_{2,2,4}) > 2$, thus the second inequality may also be strict.

Obs. Natural inequalities $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ hold.

Obs. The first inequality may be strict, shown by $K_{3,3}$.

Prop. (Erdős–Rubin–Taylor [1976]) $\chi_{\ell}(\Theta_{2,2,2n}) = 2$.

Cor. We showed earlier that $\chi_p(\Theta_{2,2,4}) > 2$, thus the second inequality may also be strict.

Obs. The "list maker" could make all lists the same, but it's not the only option.

Obs. Natural inequalities $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ hold.

Obs. The first inequality may be strict, shown by $K_{3,3}$.

Prop. (Erdős–Rubin–Taylor [1976]) $\chi_{\ell}(\Theta_{2,2,2n}) = 2$.

Cor. We showed earlier that $\chi_p(\Theta_{2,2,4}) > 2$, thus the second inequality may also be strict.

Obs. The "list maker" could make all lists the same, but it's not the only option.

Obs. Similarly, Marker could list moves ahead of time, but an adaptive strategy may be better.

Paintability and the Marker/Remover game were introduced by Schauz [2009].

Independently introduced by Zhu [2009] as on-line list coloring.

Paintability and the Marker/Remover game were introduced by Schauz [2009].

Independently introduced by Zhu [2009] as on-line list coloring.

Some coloring upper bounds also hold for list coloring, strengthening the result. Similarly, some list coloring upper bounds hold for paintability.

Paintability and the Marker/Remover game were introduced by Schauz [2009].

Independently introduced by Zhu [2009] as on-line list coloring.

Some coloring upper bounds also hold for list coloring, strengthening the result. Similarly, some list coloring upper bounds hold for paintability.

► Brooks' Theorem: $\chi(G) \le \Delta(G)$ (usually...) (Brooks [1941], Vizing [1976], Hladký–Král–Schauz [2010])

Paintability and the Marker/Remover game were introduced by Schauz [2009].

Independently introduced by Zhu [2009] as on-line list coloring.

Some coloring upper bounds also hold for list coloring, strengthening the result. Similarly, some list coloring upper bounds hold for paintability.

- ► Brooks' Theorem: $\chi(G) \le \Delta(G)$ (usually...) (Brooks [1941], Vizing [1976], Hladký–Král–Schauz [2010])
- Alon–Tarsi Theorem: Exact same hypothesis gives same bound for paintability. (Alon–Tarsi [1992], Schauz [2010])

Paintability and the Marker/Remover game were introduced by Schauz [2009].

Independently introduced by Zhu [2009] as on-line list coloring.

Some coloring upper bounds also hold for list coloring, strengthening the result. Similarly, some list coloring upper bounds hold for paintability.

- ► Brooks' Theorem: $\chi(G) \le \Delta(G)$ (usually...) (Brooks [1941], Vizing [1976], Hladký–Král–Schauz [2010])
- Alon–Tarsi Theorem: Exact same hypothesis gives same bound for paintability. (Alon–Tarsi [1992], Schauz [2010])
- ► Planar Graphs: $\chi_{\ell}(G) \le \chi_{p}(G) \le 5$ if G is planar (Thomassen [1994], Schauz [2009])

Def. A graph *G* is chromatic-choosable if $\chi(G) = \chi_{\ell}(G)$.

Def. A graph *G* is chromatic-choosable if $\chi(G) = \chi_{\ell}(G)$.

Def. A graph *G* is chromatic-paintable if $\chi(G) = \chi_p(G)$.

Def. A graph *G* is chromatic-choosable if $\chi(G) = \chi_{\ell}(G)$.

Def. A graph *G* is chromatic-paintable if $\chi(G) = \chi_p(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...}$)

Def. A graph G is chromatic-choosable if $\chi(G) = \chi_{\ell}(G)$.

Def. A graph *G* is chromatic-paintable if $\chi(G) = \chi_p(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...}$)

Conj. (Kim–Kwon–Liu–Zhu [2012]) If $|V(G)| \le 2\chi(G)$, then *G* is chromatic-paintable. (Sharpness: $K_{3,2,2,...}$)

Def. A graph G is chromatic-choosable if $\chi(G) = \chi_{\ell}(G)$.

Def. A graph *G* is chromatic-paintable if $\chi(G) = \chi_p(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...}$)

Conj. (Kim–Kwon–Liu–Zhu [2012]) If $|V(G)| \le 2\chi(G)$, then *G* is chromatic-paintable. (Sharpness: $K_{3,2,2,...}$)

Obs. Suffices to look at complete multipartite graphs.

Def. A graph G is chromatic-choosable if $\chi(G) = \chi_{\ell}(G)$.

Def. A graph *G* is chromatic-paintable if $\chi(G) = \chi_p(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...}$)

Conj. (Kim–Kwon–Liu–Zhu [2012]) If $|V(G)| \le 2\chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2,...}$)

Obs. Suffices to look at complete multipartite graphs.

We denote the complete *r*-partite graph with all part sizes 2 with K_{2*r} .

Def. A graph G is chromatic-choosable if $\chi(G) = \chi_{\ell}(G)$.

Def. A graph *G* is chromatic-paintable if $\chi(G) = \chi_p(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...}$)

Conj. (Kim–Kwon–Liu–Zhu [2012]) If $|V(G)| \le 2\chi(G)$, then *G* is chromatic-paintable. (Sharpness: $K_{3,2,2,...}$)

Obs. Suffices to look at complete multipartite graphs.

We denote the complete *r*-partite graph with all part sizes 2 with K_{2*r} .

Thm. (ERT [1976]) The complement of a matching is chromatic-choosable, i.e. $\chi_{\ell}(K_{2*r}) = r$.

Def. A graph G is chromatic-choosable if $\chi(G) = \chi_{\ell}(G)$.

Def. A graph *G* is chromatic-paintable if $\chi(G) = \chi_p(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...}$)

Conj. (Kim–Kwon–Liu–Zhu [2012]) If $|V(G)| \le 2\chi(G)$, then *G* is chromatic-paintable. (Sharpness: $K_{3,2,2,...}$)

Obs. Suffices to look at complete multipartite graphs.

We denote the complete *r*-partite graph with all part sizes 2 with K_{2*r} .

Thm. (ERT [1976]) The complement of a matching is chromatic-choosable, i.e. $\chi_{\ell}(K_{2*r}) = r$.

Ques. What analogous bounds hold for paintability?

Def. The join of graphs *G* and *H*, denoted $G \oplus H$, is obtained from the disjoint union G + H by adding edges joining all of V(G) to all of V(H).

Def. The join of graphs *G* and *H*, denoted $G \oplus H$, is obtained from the disjoint union G + H by adding edges joining all of V(G) to all of V(H).

Thm. If a graph *G* is *k*-paintable and $|V(G)| \le \frac{t}{t-1}k$, then $G \oplus \overline{K_t}$ is (k + 1)-paintable.

Def. The join of graphs G and H, denoted $G \oplus H$, is obtained from the disjoint union G + H by adding edges joining all of V(G) to all of V(H).

Thm. If a graph *G* is *k*-paintable and $|V(G)| \le \frac{t}{t-1}k$, then $G \oplus \overline{K_t}$ is (k+1)-paintable.

This provides an alternative proof of a known result:

Cor. (KKLZ [2012]) For all r, K_{2*r} is chromatic-paintable.

Def. The join of graphs G and H, denoted $G \oplus H$, is obtained from the disjoint union G + H by adding edges joining all of V(G) to all of V(H).

Thm. If a graph *G* is *k*-paintable and $|V(G)| \le \frac{t}{t-1}k$, then $G \oplus \overline{K_t}$ is (k+1)-paintable.

This provides an alternative proof of a known result:

Cor. (KKLZ [2012]) For all r, K_{2*r} is chromatic-paintable.

Thm. For any graph *G*, there exists $t_0 \in \mathbb{N}$ such that if $t > t_0$, then $G \oplus K_t$ is chromatic-paintable.
Def. let $K_{l,r}$ be the complete bipartite graph with parts $L = \{v_1, \dots, v_l\}$ and $R = \{u_1, \dots, u_r\}$.

Def. let $K_{l,r}$ be the complete bipartite graph with parts $L = \{v_1, \dots, v_l\}$ and $R = \{u_1, \dots, u_r\}$.

Thm. (ERT [1976]) $K_{\ell,r}$ is ℓ -choosable $\Leftrightarrow r < \ell^{\ell}$.

Def. let $K_{l,r}$ be the complete bipartite graph with parts $L = \{v_1, \dots, v_l\}$ and $R = \{u_1, \dots, u_r\}$.

Thm. (ERT [1976]) $K_{\ell,r}$ is ℓ -choosable $\Leftrightarrow r < \ell^{\ell}$.

Lem. If each $u_j \in R$ has ℓ tokens, then Remover has a winning strategy in $K_{\ell,r}$ if and only if $r < \prod e_i$ where e_i is the number of tokens on $v_i \in L$.

Def. let $K_{l,r}$ be the complete bipartite graph with parts $L = \{v_1, \dots, v_l\}$ and $R = \{u_1, \dots, u_r\}$.

Thm. (ERT [1976]) $K_{\ell,r}$ is ℓ -choosable $\Leftrightarrow r < \ell^{\ell}$.

Lem. If each $u_j \in R$ has ℓ tokens, then Remover has a winning strategy in $K_{\ell,r}$ if and only if $r < \prod e_i$ where e_i is the number of tokens on $v_i \in L$.

Cor. $K_{\ell,r}$ is ℓ -paintable $\Leftrightarrow r < \ell^{\ell}$.

Def. let $K_{l,r}$ be the complete bipartite graph with parts $L = \{v_1, \dots, v_l\}$ and $R = \{u_1, \dots, u_r\}$.

Thm. (ERT [1976]) $K_{\ell,r}$ is ℓ -choosable $\Leftrightarrow r < \ell^{\ell}$.

Lem. If each $u_j \in R$ has ℓ tokens, then Remover has a winning strategy in $K_{\ell,r}$ if and only if $r < \prod e_i$ where e_i is the number of tokens on $v_i \in L$.

Cor. $K_{\ell,r}$ is ℓ -paintable $\Leftrightarrow r < \ell^{\ell}$.

Cor. Later, we apply this to $K_{2,r}$ in a different setting.

Def. let $K_{l,r}$ be the complete bipartite graph with parts $L = \{v_1, \dots, v_l\}$ and $R = \{u_1, \dots, u_r\}$.

Thm. (ERT [1976]) $K_{\ell,r}$ is ℓ -choosable $\Leftrightarrow r < \ell^{\ell}$.

Lem. If each $u_j \in R$ has ℓ tokens, then Remover has a winning strategy in $K_{\ell,r}$ if and only if $r < \prod e_i$ where e_i is the number of tokens on $v_i \in L$.

Cor. $K_{\ell,r}$ is ℓ -paintable $\Leftrightarrow r < \ell^{\ell}$.

Cor. Later, we apply this to $K_{2,r}$ in a different setting.

Obs. Determining when $K_{\ell,r}$ is $(\ell - 1)$ -paintable is different and more complicated than $(\ell - 1)$ -choosable.

Obs. When G is k-choosable, giving k-lists to each vertex uses k|V(G)| labels in total.

Obs. When G is k-choosable, giving k-lists to each vertex uses k|V(G)| labels in total.

Def. (Isaak [2002]) The sum-choosability of a graph *G*, denoted $\chi_{sc}(G)$, is the least *r* such that *G* is *f*-choosable for some list assignment *f* with sum *r*.

Obs. When G is k-choosable, giving k-lists to each vertex uses k|V(G)| labels in total.

Def. (Isaak [2002]) The sum-choosability of a graph *G*, denoted $\chi_{sc}(G)$, is the least *r* such that *G* is *f*-choosable for some list assignment *f* with sum *r*.

Obs. Suppose Remover has a budget of tokens instead of having *k* tokens at each vertex. Some vertices may be more dangerous and require more tokens.

Obs. When G is k-choosable, giving k-lists to each vertex uses k|V(G)| labels in total.

Def. (Isaak [2002]) The sum-choosability of a graph *G*, denoted $\chi_{sc}(G)$, is the least *r* such that *G* is *f*-choosable for some list assignment *f* with sum *r*.

Obs. Suppose Remover has a budget of tokens instead of having *k* tokens at each vertex. Some vertices may be more dangerous and require more tokens.

Def. The sum-paintability of a graph *G*, denoted $\chi_{sp}(G)$, is the least *r* such that Remover has a winning strategy for some allocation of *r* tokens to V(G).

Obs. When G is k-choosable, giving k-lists to each vertex uses k|V(G)| labels in total.

Def. (Isaak [2002]) The sum-choosability of a graph *G*, denoted $\chi_{sc}(G)$, is the least *r* such that *G* is *f*-choosable for some list assignment *f* with sum *r*.

Obs. Suppose Remover has a budget of tokens instead of having *k* tokens at each vertex. Some vertices may be more dangerous and require more tokens.

Def. The sum-paintability of a graph *G*, denoted $\chi_{sp}(G)$, is the least *r* such that Remover has a winning strategy for some allocation of *r* tokens to V(G).

Obs. The natural inequality $\chi_{sc}(G) \leq \chi_{sp}(G)$ holds.

Lem. Adding a leaf to *G* increases $\chi_{sp}(G)$ by 2. When $e \ge 3$, adding an ear with *e* edges increases $\chi_{sp}(G)$ by 2e - 1.

Lem. Adding a leaf to *G* increases $\chi_{sp}(G)$ by 2. When $e \ge 3$, adding an ear with *e* edges increases $\chi_{sp}(G)$ by 2e - 1.

Lem. $\chi_{sp}(K_{2,r}) = \chi_{sc}(K_{2,r}) = 2r + \min\{s + t : st > r\}.$

Lem. Adding a leaf to *G* increases $\chi_{sp}(G)$ by 2. When $e \ge 3$, adding an ear with *e* edges increases $\chi_{sp}(G)$ by 2e - 1.

Lem. $\chi_{sp}(K_{2,r}) = \chi_{sc}(K_{2,r}) = 2r + \min\{s + t : st > r\}.$

Pf. Lower bound comes from $\chi_{sc}(K_{2,r})$ (BBBD [2006]).

Lem. Adding a leaf to *G* increases $\chi_{sp}(G)$ by 2. When $e \ge 3$, adding an ear with *e* edges increases $\chi_{sp}(G)$ by 2e - 1.

Lem. $\chi_{sp}(K_{2,r}) = \chi_{sc}(K_{2,r}) = 2r + \min\{s + t : st > r\}.$

Pf. Lower bound comes from $\chi_{sc}(K_{2,r})$ (BBBD [2006]). Apply the earlier Lemma about $K_{\ell,r}$:

Lem. Adding a leaf to *G* increases $\chi_{sp}(G)$ by 2. When $e \ge 3$, adding an ear with *e* edges increases $\chi_{sp}(G)$ by 2e - 1.

Lem. $\chi_{sp}(K_{2,r}) = \chi_{sc}(K_{2,r}) = 2r + \min\{s + t : st > r\}.$

Pf. Lower bound comes from $\chi_{sc}(K_{2,r})$ (BBBD [2006]). Apply the earlier Lemma about $K_{l,r}$:

s and t tokens on the left vertices.

Lem. Adding a leaf to *G* increases $\chi_{sp}(G)$ by 2. When $e \ge 3$, adding an ear with *e* edges increases $\chi_{sp}(G)$ by 2e - 1.

Lem. $\chi_{sp}(K_{2,r}) = \chi_{sc}(K_{2,r}) = 2r + \min\{s + t : st > r\}.$

Pf. Lower bound comes from $\chi_{sc}(K_{2,r})$ (BBBD [2006]). Apply the earlier Lemma about $K_{l,r}$:

- s and t tokens on the left vertices.
- 2 tokens on each vertex on the right.

Lem. Adding a leaf to *G* increases $\chi_{sp}(G)$ by 2. When $e \ge 3$, adding an ear with *e* edges increases $\chi_{sp}(G)$ by 2e - 1.

Lem. $\chi_{sp}(K_{2,r}) = \chi_{sc}(K_{2,r}) = 2r + \min\{s + t : st > r\}.$

Pf. Lower bound comes from $\chi_{sc}(K_{2,r})$ (BBBD [2006]). Apply the earlier Lemma about $K_{\ell,r}$:

- s and t tokens on the left vertices.
- 2 tokens on each vertex on the right.

When st > r, Remover wins, proving the upper bound.

Lem. Adding a leaf to *G* increases $\chi_{sp}(G)$ by 2. When $e \ge 3$, adding an ear with *e* edges increases $\chi_{sp}(G)$ by 2e - 1.

Lem. $\chi_{sp}(K_{2,r}) = \chi_{sc}(K_{2,r}) = 2r + \min\{s + t : st > r\}.$

Pf. Lower bound comes from $\chi_{sc}(K_{2,r})$ (BBBD [2006]). Apply the earlier Lemma about $K_{\ell,r}$:

- s and t tokens on the left vertices.
- 2 tokens on each vertex on the right.

When st > r, Remover wins, proving the upper bound.

Def. The generalized theta-graph, denoted $\Theta_{k_1,...,k_n}$, consists of a pair of vertices joined by n internally disjoint paths of lengths $k_1, ..., k_n$ with each $k_i \ge 2$.

Lem. Adding a leaf to *G* increases $\chi_{sp}(G)$ by 2. When $e \ge 3$, adding an ear with *e* edges increases $\chi_{sp}(G)$ by 2e - 1.

Lem. $\chi_{sp}(K_{2,r}) = \chi_{sc}(K_{2,r}) = 2r + \min\{s + t : st > r\}.$

Pf. Lower bound comes from $\chi_{sc}(K_{2,r})$ (BBBD [2006]). Apply the earlier Lemma about $K_{\ell,r}$:

- s and t tokens on the left vertices.
- 2 tokens on each vertex on the right.

When st > r, Remover wins, proving the upper bound.

Def. The generalized theta-graph, denoted $\Theta_{k_1,...,k_n}$, consists of a pair of vertices joined by n internally disjoint paths of lengths $k_1, ..., k_n$ with each $k_i \ge 2$.

Cor. These Lemmas determine the sum-paintability of generalized theta-graphs.

Obs. Let b(G) = |V(G)| + |E(G)|. For any graph G, $\chi_{sc}(G) \le \chi_{sp}(G) \le b(G)$.

Obs. Let b(G) = |V(G)| + |E(G)|. For any graph G, $\chi_{sc}(G) \le \chi_{sp}(G) \le b(G)$.

Def. We say a graph *G* is sc-greedy if $\chi_{sc}(G) = b(G)$.

Obs. Let b(G) = |V(G)| + |E(G)|. For any graph G, $\chi_{sc}(G) \le \chi_{sp}(G) \le b(G)$.

Def. We say a graph *G* is sc-greedy if $\chi_{sc}(G) = b(G)$.

Thm. (Isaak [2004]) If each block in *G* is sc-greedy, then *G* is sc-greedy.

Thm. (BBBD [2006]) Cycles, trees, complete graphs, and line graphs of trees are all sc-greedy.

Obs. Let b(G) = |V(G)| + |E(G)|. For any graph G, $\chi_{sc}(G) \le \chi_{sp}(G) \le b(G)$.

Def. We say a graph *G* is sc-greedy if $\chi_{sc}(G) = b(G)$.

Thm. (Isaak [2004]) If each block in *G* is sc-greedy, then *G* is sc-greedy.

Thm. (BBBD [2006]) Cycles, trees, complete graphs, and line graphs of trees are all sc-greedy.

Def. We say a graph *G* is sp-greedy if $\chi_{sp}(G) = b(G)$.

Obs. Let b(G) = |V(G)| + |E(G)|. For any graph G, $\chi_{sc}(G) \le \chi_{sp}(G) \le b(G)$.

Def. We say a graph *G* is sc-greedy if $\chi_{sc}(G) = b(G)$.

Thm. (Isaak [2004]) If each block in *G* is sc-greedy, then *G* is sc-greedy.

Thm. (BBBD [2006]) Cycles, trees, complete graphs, and line graphs of trees are all sc-greedy.

Def. We say a graph *G* is sp-greedy if $\chi_{sp}(G) = b(G)$.

Ques. What larger families of graphs are sp-greedy?

Obs. Let b(G) = |V(G)| + |E(G)|. For any graph G, $\chi_{sc}(G) \le \chi_{sp}(G) \le b(G)$.

Def. We say a graph *G* is sc-greedy if $\chi_{sc}(G) = b(G)$.

Thm. (Isaak [2004]) If each block in *G* is sc-greedy, then *G* is sc-greedy.

Thm. (BBBD [2006]) Cycles, trees, complete graphs, and line graphs of trees are all sc-greedy.

Def. We say a graph *G* is sp-greedy if $\chi_{sp}(G) = b(G)$.

Ques. What larger families of graphs are sp-greedy?

Obs. Adding leaves and ears of length at least 3 to an sp-greedy graph creates another sp-greedy graph.

Outerplanar graphs and chordal graphs were considered, but Heinold [2006] showed examples in each family that are not sc-greedy.

Outerplanar graphs and chordal graphs were considered, but Heinold [2006] showed examples in each family that are not sc-greedy.

Def. For $n \ge 3$, the *n*-fan is $P_{n-1} \oplus K_1$.

Outerplanar graphs and chordal graphs were considered, but Heinold [2006] showed examples in each family that are not sc-greedy.

Def. For $n \ge 3$, the *n*-fan is $P_{n-1} \oplus K_1$.

Thm. (Heinold [2006]) If *G* is an *n*-fan, then $\chi_{sc}(G) \leq b(G) - \lfloor \frac{n}{11} \rfloor$.

Outerplanar graphs and chordal graphs were considered, but Heinold [2006] showed examples in each family that are not sc-greedy.

Def. For $n \ge 3$, the *n*-fan is $P_{n-1} \oplus K_1$.

Thm. (Heinold [2006]) If *G* is an *n*-fan, then $\chi_{sc}(G) \leq b(G) - \lfloor \frac{n}{11} \rfloor$.

Thm. If G is an n-fan, then G is sp-greedy.

Outerplanar graphs and chordal graphs were considered, but Heinold [2006] showed examples in each family that are not sc-greedy.

Def. For $n \ge 3$, the *n*-fan is $P_{n-1} \oplus K_1$.

Thm. (Heinold [2006]) If *G* is an *n*-fan, then $\chi_{sc}(G) \leq b(G) - \lfloor \frac{n}{11} \rfloor$.

Thm. If G is an *n*-fan, then G is sp-greedy.

Cor. $\chi_{sp}(G) - \chi_{sc}(G)$ can be arbitrarily large.

Ques. Can $\chi_{\rho}(G) - \chi_{\ell}(G) > 1$? If so, by how much?

Ques. Can $\chi_p(G) - \chi_l(G) > 1$? If so, by how much?

Ques. When is $K_{\ell+t,r} \ell$ -paintable for $t \ge 1$?

Ques. Can $\chi_p(G) - \chi_\ell(G) > 1$? If so, by how much?

Ques. When is $K_{\ell+t,r} \ell$ -paintable for $t \ge 1$?

Ques. Are all outerplanar graphs sp-greedy?

Ques. Can $\chi_{\rho}(G) - \chi_{\ell}(G) > 1$? If so, by how much?

Ques. When is $K_{\ell+t,r} \ell$ -paintable for $t \ge 1$?

Ques. Are all outerplanar graphs sp-greedy?

Ques. Are all chordal graphs graphs sp-greedy?

Ques. Can $\chi_p(G) - \chi_\ell(G) > 1$? If so, by how much?

Ques. When is $K_{\ell+t,r} \ell$ -paintable for $t \ge 1$?

Ques. Are all outerplanar graphs sp-greedy?

Ques. Are all chordal graphs graphs sp-greedy?

Ques. What other choosability results hold for paintability?