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Conclude: Marker has a winning strategy on this graph
when each vertex has 2 tokens.
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assigning tokens, we say G is ƒ -paintable if Remover
has a winning strategy in this game.

Def. If ƒ () = k for all  ∈ V(G) and G is ƒ -paintable,
then we say G is k-paintable.

Def. The least such k for which this is true is the
paintability or paint number of G and is denoted χp(G).
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Relation to Chromatic Number

Obs. Sets removed by Remover form a proper coloring.

Prop. χ(C5) = 3.

Ex. Consider the following strategy for Marker:
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Obs. If Marker always marks all available vertices,
then the least k such that Remover can win against
this strategy is χ(G).
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Obs. If L() = {1, . . . , k} for all  ∈ V(G), then the least
such k for which G is L-colorable is χ(G), thus
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Relation to Choosability

Ex. Consider the same example for paintability.

Obs. If Marker’s strategy mimics list assignments by
marking vertices whose list has color  on the th round,
then the least k such that Remover has a winning
strategy against all L having list of size k is χℓ(G).
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Obs. Natural inequalities χ(G) ≤ χℓ(G) ≤ χp(G) hold.

Obs. The first inequality may be strict, shown by K3,3.

Prop. (Erdős–Rubin–Taylor [1976]) χℓ(Θ2,2,2n) = 2.

Cor. We showed earlier that χp(Θ2,2,4) > 2, thus the
second inequality may also be strict.

Obs. The “list maker” could make all lists the same,
but it’s not the only option.

Obs. Similarly, Marker could list moves ahead of time,
but an adaptive strategy may be better.
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Background

Paintability and the Marker/Remover game were
introduced by Schauz [2009].

Independently introduced by Zhu [2009] as
on-line list coloring.

Some coloring upper bounds also hold for list coloring,
strengthening the result. Similarly, some list coloring
upper bounds hold for paintability.

◮ Brooks’ Theorem: χ(G) ≤ Δ(G) (usually...) (Brooks
[1941], Vizing [1976], Hladký–Král–Schauz [2010]) ĺ

◮ Alon–Tarsi Theorem: Exact same hypothesis gives
same bound for paintability.
(Alon–Tarsi [1992], Schauz [2010])

◮ Planar Graphs: χℓ(G) ≤ χp(G) ≤ 5 if G is planar
(Thomassen [1994], Schauz [2009])
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Def. A graph G is chromatic-choosable if χ(G) = χℓ(G).

Def. A graph G is chromatic-paintable if χ(G) = χp(G).

Conj. (Ohba [2002]) If |V(G)| ≤ 2χ(G) + 1, then G is
chromatic-choosable. (Sharpness: K4,2,2,...)

Conj. (Kim–Kwon–Liu–Zhu [2012]) If |V(G)| ≤ 2χ(G),
then G is chromatic-paintable. (Sharpness: K3,2,2,...)

Obs. Suffices to look at complete multipartite graphs.

We denote the complete r-partite graph with all part
sizes 2 with K2∗r.

Thm. (ERT [1976]) The complement of a matching is
chromatic-choosable, i.e. χℓ(K2∗r) = r.

Ques. What analogous bounds hold for paintability?
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The Join Operation

Def. The join of graphs G and H, denoted G H, is
obtained from the disjoint union G+ H by adding edges
joining all of V(G) to all of V(H).

Thm. If a graph G is k-paintable and |V(G)| ≤ t
t−1

k,

then G Kt is (k + 1)-paintable.

This provides an alternative proof of a known result:

Cor. (KKLZ [2012]) For all r, K2∗r is chromatic-paintable.

Thm. For any graph G, there exists t0 ∈ N such that
if t > t0, then G Kt is chromatic-paintable.
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Complete Bipartite Graphs

Def. let Kℓ,r be the complete bipartite graph with parts
L = {1, . . . , ℓ} and R = {1, . . . , r}.

Thm. (ERT [1976]) Kℓ,r is ℓ-choosable ⇔ r < ℓℓ.

Lem. If each j ∈ R has ℓ tokens, then Remover has a
winning strategy in Kℓ,r if and only if r <

∏

e where e is
the number of tokens on  ∈ L.

Cor. Kℓ,r is ℓ-paintable ⇔ r < ℓℓ.

Cor. Later, we apply this to K2,r in a different setting.

Obs. Determining when Kℓ,r is (ℓ− 1)-paintable is
different and more complicated than (ℓ− 1)-choosable.
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Obs. The natural inequality χsc(G) ≤ χsp(G) holds.
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Lem. Adding a leaf to G increases χsp(G) by 2.
When e ≥ 3, adding an ear with e edges increases
χsp(G) by 2e− 1.

Lem. χsp(K2,r) = χsc(K2,r) = 2r +min{s+ t : st > r}.

Pf. Lower bound comes from χsc(K2,r) (BBBD [2006]).
Apply the earlier Lemma about Kℓ,r:
◮ s and t tokens on the left vertices.
◮ 2 tokens on each vertex on the right.

When st > r, Remover wins, proving the upper bound.

Def. The generalized theta-graph, denoted Θk1,...,kn,
consists of a pair of vertices joined by n internally
disjoint paths of lengths k1, . . . , kn with each k ≥ 2.

Cor. These Lemmas determine the sum-paintability of
generalized theta-graphs.
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Def. We say a graph G is sc-greedy if χsc(G) = b(G).

Thm. (Isaak [2004]) If each block in G is sc-greedy,
then G is sc-greedy.

Thm. (BBBD [2006]) Cycles, trees, complete graphs,
and line graphs of trees are all sc-greedy.

Def. We say a graph G is sp-greedy if χsp(G) = b(G).

Ques. What larger families of graphs are sp-greedy?

Obs. Adding leaves and ears of length at least 3 to an
sp-greedy graph creates another sp-greedy graph.
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Fans

Outerplanar graphs and chordal graphs were
considered, but Heinold [2006] showed examples in
each family that are not sc-greedy.

Def. For n ≥ 3, the n-fan is Pn−1 K1.

Thm. (Heinold [2006]) If G is an n-fan, then
χsc(G) ≤ b(G) −

�

n
11

�

.

Thm. If G is an n-fan, then G is sp-greedy.

Cor. χsp(G) − χsc(G) can be arbitrarily large.
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Open Questions

Ques. Can χp(G) − χℓ(G) > 1? If so, by how much?

Ques. When is Kℓ+t,r ℓ-paintable for t ≥ 1?

Ques. Are all outerplanar graphs sp-greedy?

Ques. Are all chordal graphs graphs sp-greedy?

Ques. What other choosability results hold for
paintability?


