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A graph is a cograph ( = complement-reducible graph)  
if it can be reduced to an edgeless graph by repeatedly 
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Equivalently, if it is P4-free  (every induced path has ≤ 2 edges). 
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iff G is an intersection graph of open 
semicircular arcs of a circle. 

 

iff G reduces to Kt (2) (with t ≥ 1) by repeatedly 
deleting universal vertices, then contracting 
selected complete graphs into vertices. 
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Lemma: A nontrivial connected graph  
 is complete multipartite if and only if  
 it is a paw-free cograph. 
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 G G Gc   
  ≅ K1,2,2 ≅ K2,2 ∪ K1,1 ∪ K1 

Theorem: If G is a nontrivial connected graph, then Gc  
 consists of k complete mutipartite (or trivial) 

components iff G is complete k-partite. 
 


