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A graph is a cograph ( = complement-reducible graph)
iIf it can be reduced to an edgeless graph by repeatedly
taking complements within components.
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Equivalently, if it is P4-free (every induced path has <2 edges).

D. Corneil, H. Lerchs & L. Stewart Burlingham,
“Complement reducible graphs” Discrete Applied Mathematics (1981)
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Theorem: |[f Gis a nontrivial connected graph, then every
nontrivial component of G° is complete bipartite

iIff G is a claw-free cograph.
iff every induced tree has <2 edges.



Theorem: |[f Gis a nontrivial connected graph, then every
nontrivial component of G° is complete bipartite

iIff G is a claw-free cograph.

iff G is an intersection graph of open
semicircular arcs of a circle.

iff G reduces to Ky (with t = 1) by repeatedly
deleting universal vertices, then contracting
selected complete graphs into vertices.

F.Bonomo, G. Duran, L.N. Grippo & M.D. Safe
“On structural results about circular-arc and circle graphs’
Journal of Graph Theory (2009)
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If G is a nontrivial connected graph, then every
nontrivial component of G° is complete partite

Iff G is a dart-free cograph.

If G is a nontrivial connected graph, then every

nontrivial component of G° is complete k-partite
iff G is a {Ky «+1,dart}-free cograph.



Lemma: A nontrivial connected graph
is complete multipartite if and only if
it is a paw-free cograph.

S. Olariu, “Paw-free graphs,” Information Processing Letters (1988)
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Lemma: A nontrivial connected graph
is complete k-partite if and only if
it is a {Kx+1, paw}-free cograph.
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Figure 3: A dart-free (but not claw-free) cograph G.

L. Kuszner & M. Malafiejski,
“A polynomial algorithm for some
preemptive multiprocessor task scheduling problems,”
European Journal of Operations Research (2007)
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Lemma: A nontrivial connected graph G is a dart-free
cograph if and only if G is complete multipartite.



Theorem: |If G is a nontrivial connected graph, then every
nontrivial component of G° is complete multipartite

iff G is a dart-free cograph.
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iff G is complete multipartite.
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Theorem: |[f Gis a nontrivial connected graph, then every
nontrivial component of G° is complete multipartite

iff G is complete partite.
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Theorem: If Gis a nontrivial connected graph, then G°
consists of k complete mutipartite (or trivial)

components iff G is complete k-partite.



