K_7 in the torus: a long story

Thomas W. Tucker
Colgate University
ttucker@colgate.edu
The embedding of K_7 in the torus

As we all know, K_7 embeds in the torus (there is a map of 7 countries where each touches each other so the map requires 7 colors).
The embedding of K_7 in the torus

As we all know, K_7 embeds in the torus (there is a map of 7 countries where each touches each other so the map requires 7 colors).

This embedding leads us in a number of different directions:

1. The Ringel-Youngs Map Color Theorem, including current and voltage graphs
The embedding of K_7 in the torus

As we all know, K_7 embeds in the torus (there is a map of 7 countries where each touches each other so the map requires 7 colors).

This embedding leads us in a number of different directions:

1. The Ringel-Youngs Map Color Theorem, including current and voltage graphs
2. Cayley graphs and Cayley maps
The embedding of K_7 in the torus

As we all know, K_7 embeds in the torus (there is a map of 7 countries where each touches each other so the map requires 7 colors).

This embedding leads us in a number of different directions:

1. The Ringel-Youngs Map Color Theorem, including current and voltage graphs
2. Cayley graphs and Cayley maps
3. Rotation systems for embeddings
The embedding of K_7 in the torus

As we all know, K_7 embeds in the torus (there is a map of 7 countries where each touches each other so the map requires 7 colors).

This embedding leads us in a number of different directions:

1. The Ringel-Youngs Map Color Theorem, including current and voltage graphs
2. Cayley graphs and Cayley maps
3. Rotation systems for embeddings
4. Regular maps, chiral and reflexible
The embedding of K_7 in the torus

As we all know, K_7 embeds in the torus (there is a map of 7 countries where each touches each other so the map requires 7 colors).

This embedding leads us in a number of different directions:

1. The Ringel-Youngs Map Color Theorem, including current and voltage graphs
2. Cayley graphs and Cayley maps
3. Rotation systems for embeddings
4. Regular maps, chiral and reflexible

I am mostly interested in the last item.
From the beginning, the problem is to describe complicated maps with arbitrarily large number of vertices, in order to find minimal embeddings for K_n (we’ll color vertices rather than faces).
From the beginning, the problem is to describe complicated maps with arbitrarily large number of vertices, in order to find minimal embeddings for K_n (we’ll color vertices rather than faces). Solution: use groups, the world’s most concise data structure. In other words, hope that the minimal maps have lots of symmetry.
From the beginning, the problem is to describe complicated maps with arbitrarily large number of vertices, in order to find minimal embeddings for K_n (we’ll color vertices rather than faces). Solution: use groups, the world’s most concise data structure. In other words, hope that the minimal maps have lots of symmetry. A Cayley graph $C(A, X)$ for group A and generating set X has A as vertex set and an edge (directed and colored x) from a to ax for all $a \in A$ and $x \in X$. If $x^2 = 1$, we often identify the pair of directed edges (a, ax) and (ax, a) to a single undirected edge. Main fact; the action of A given by left multiplication by b is a graph isomorphism: $a \rightarrow ax$ goes to $ba \rightarrow bax$. Thus A acts \textbf{regularly} (transitively without fixed points) on the vertex set of $C(A, X)$.
Ringel-Youngs and Cayley graphs

From the beginning, the problem is to describe complicated maps with arbitrarily large number of vertices, in order to find minimal embeddings for K_n (we’ll color vertices rather than faces). Solution: use groups, the world’s most concise data structure. In other words, hope that the minimal maps have lots of symmetry. A Cayley graph $C(A, X)$ for group A and generating set X has A as vertex set and an edge (directed and colored x) from a to ax for all $a \in A$ and $x \in X$. If $x^2 = 1$, we often identify the pair of directed edges (a, ax) and (ax, a) to a single undirected edge. Main fact; the action of A given by left multiplication by b is a graph isomorphism: $a \rightarrow ax$ goes to $ba \rightarrow bax$. Thus A acts \textbf{regularly} (transitively without fixed points) on the vertex set of $C(A, X)$.
Rotation systems

To define an orientable embedding for a graph G, we only need to give for each vertex v a cyclic order of the edges incident to v, that would be induced by an orientation of the embedding surface. The collection of all these cyclic orders is called a rotation system. To see the embedding surface associated with a rotation system, just thicken each vertex to a disk, thicken each edge to a band and attach around each vertex-disk by the order given by the rotation. The result is a thickening of the graph to a surface with boundary.
Rotation systems

To define an orientable embedding for a graph G, we only need to give for each vertex v a cyclic order of the edges incident to v, that would be induced by an orientation of the embedding surface. The collection of all these cyclic orders is called a rotation system. To see the embedding surface associated with a rotation system, just thicken each vertex to a disk, thicken each edge to a band and attach around each vertex-disk by the order given by the rotation. The result is a thickening of the graph to a surface with boundary. Now just attach disks on each boundary component (face) to get a closed surface.
Rotation systems

To define an orientable embedding for a graph G, we only need to give for each vertex v a cyclic order of the edges incident to v, that would be induced by an orientation of the embedding surface. The collection of all these cyclic orders is called a rotation system. To see the embedding surface associated with a rotation system, just thicken each vertex to a disk, thicken each edge to a band and attach around each vertex-disk by the order given by the rotation. The result is a thickening of the graph to a surface with boundary. Now just attach disks on each boundary component (face) to get a closed surface.

The idea of specifying an embedding for a given graph G this way is due to Heffter (1895) and Edmonds (1956). Important observation: any graph automorphism that respects the rotation (cyclic order at each vertex) induces an automorphism of the embedding (takes faces to faces).
The Cayley map for K_7 in the torus

The idea is to describe an embedding (or “map”) with lots of symmetry.
The Cayley map for K_7 in the torus

The idea is to describe an embedding (or “map”) with lots of symmetry.

Example: K_7 in the torus Begin with Cayley graph $C(Z_7, \{1, 2, 3\})$ (view Z_7 additively). At every vertex we have edges going out labeled $1, 2, 3$ and in $-1, -2, -3$.
The Cayley map for K_7 in the torus

The idea is to describe an embedding (or “map”) with lots of symmetry.

Example: K_7 in the torus Begin with Cayley graph $C(Z_7, \{1, 2, 3\})$ (view Z_7 additively). At every vertex we have edges going out labeled $1, 2, 3$ and in $−1, −2, −3$. Define a rotation system by simply specifying the order $(1, 3, 2, −1, −3, −2)$ at every vertex.
The Cayley map for K_7 in the torus

The idea is to describe an embedding (or “map”) with lots of symmetry.

Example: K_7 in the torus Begin with Cayley graph $C(Z_7, \{1, 2, 3\})$ (view Z_7 additively). At every vertex we have edges going out labeled $1, 2, 3$ and in $-1, -2, -3$.

Define a rotation system by simply specifying the order $(1, 3, 2, -1, -3, -2)$ at every vertex. Call this the **Cayley map** $CM(Z_7, (1, 3, 2, -1, -3, -2))$, namely a Cayley graph together with a cyclic order of $X \cup X^{-1}$.

We can trace out the faces: start at vertex 0, go out on 1, coming into vertex 1 on -1, follow rotation to -3 and leave to vertex -2, arriving there on 3, follow rotation to 2, go out returning to 0 arriving on -2, and follow rotation back to 1.
The Cayley map for K_7 in the torus

The idea is to describe an embedding (or “map”) with lots of symmetry.

Example: K_7 in the torus

Begin with Cayley graph $C(Z_7, \{1, 2, 3\})$ (view Z_7 additively). At every vertex we have edges going out labeled $1, 2, 3$ and in $-1, -2, -3$.

Define a rotation system by simply specifying the order $(1, 3, 2, -1, -3, -2)$ at every vertex. Call this the **Cayley map** $CM(Z_7, (1, 3, 2, -1, -3, -2))$, namely a Cayley graph together with a cyclic order of $X \cup X^{-1}$.

We can trace out the faces: start at vertex 0, go out on 1, coming into vertex 1 on -1, follow rotation to -3 and leave to vertex -2, arriving there on 3, follow rotation to 2, go out returning to 0 arriving on -2, and follow rotation back to 1.
Automorphisms

We already know that $CM(Z_7, (1, 3, 2, -1, -3, -2)$ is vertex transitive by looking at “left addition” (remember we are looking at Z_7 additively).

Now consider multiplication by 3, which is an additive automorphism of Z_7. It respects the rotation so it is a map automorphism. This means our map has rotational 6-fold symmetry at every vertex, making it orientably regular. Orientably regular maps are analogous to the Platonic solids, having full rotation symmetry at every vertex, every face-center, and every edge-midpoint.
Automorphisms

We already know that $CM(Z_7, (1, 3, 2, -1, -3, -2)$ is vertex transitive by looking at “left addition” (remember we are looking at Z_7 additively.

Now consider multiplication by 3, which is an additive automorphism of Z_7. It respects the rotation so it is a map automorphism.
Automorphisms

We already know that $CM(Z_7, (1, 3, 2, -1, -3, -2)$ is vertex transitive by looking at “left addition” (remember we are looking at Z_7 additively.

Now consider multiplication by 3, which is an additive automorphism of Z_7. It respects the rotation so it is a map automorphism.

This means our map has rotational 6-fold symmetry at every vertex, making it orientably regular
We already know that $CM(\mathbb{Z}_7, (1, 3, 2, -1, -3, -2)$ is vertex transitive by looking at “left addition” (remember we are looking at \mathbb{Z}_7 additively. Now consider multiplication by 3, which is an additive automorphism of \mathbb{Z}_7. It respects the rotation so it is a map automorphism. This means our map has rotational 6-fold symmetry at every vertex, making it **orientably regular**. Orientably regular maps are analogous to the Platonic solids, having full rotation symmetry at every vertex, every face-center, and every edge-midpoint.
Chirallity of K_7 in the torus

An orientably regular map may also have orientation-reversing “reflection”. If so it is called **reflexible**; if not it is **chiral**.
Chirallity of K_7 in the torus

An orientably regular map may also have orientation-reversing “reflection”. If so it is called reflexible; if not it is chiral. We claim that $CM(Z_7,(1,3,2,-1,-3,-2)$ is chiral!

Chirallity of K_7 in the torus

An orientably regular map may also have orientation-reversing “reflection”. If so it is called reflexible; if not it is chiral. We claim that $CM(Z_7, (1, 3, 2, -1, -3, -2)$ is chiral! Suppose not. Then there would be dihedral symmetry at every vertex so there would be a reflection fixing 0 and the outgoing edge 1 and the incoming edge -1 (since it is antipodal to 1).
Chirallity of K_7 in the torus

An orientably regular map may also have orientation-reversing “reflection”. If so it is called **reflexible**; if not it is **chiral**.
We claim that $CM(Z_7, (1, 3, 2, -1, -3, -2)$ is chiral!
Suppose not. Then there would be dihedral symmetry at every vertex so there would be a reflection fixing 0 and the outgoing edge 1 and the incoming edge -1 (since it is antipodal to 1). But then it would also fix the incoming edge -1 and outgoing 1 at the next vertex.
Chirallity of K_7 in the torus

An orientably regular map may also have orientation-reversing “reflection”. If so it is called **reflexible**; if not it is **chiral**. We claim that $CM(\mathbb{Z}_7, (1, 3, 2, -1, -3, -2)$ is chiral!
Suppose not. Then there would be dihedral symmetry at every vertex so there would be a reflection fixing 0 and the outgoing edge 1 and the incoming edge -1 (since it is antipodal to 1). But then it would also fix the incoming edge -1 and outgoing 1 at the next vertex.
Continuing this way along the “straightahead” path following edges labeled ± 1, we go through every vertex. Thus the reflection fixes all vertices, which is impossible (it is supposed to pair 3 and -2 and also 2 and -3).
Chirallity of K_7 in the torus

An orientably regular map may also have orientation-reversing “reflection”. If so it is called reflexible; if not it is chiral. We claim that $CM(Z_7, (1, 3, 2, -1, -3, -2)$ is chiral!

Suppose not. Then there would be dihedral symmetry at every vertex so there would be a reflection fixing 0 and the outgoing edge 1 and the incoming edge -1 (since it is antitpodal to 1). But then it would also fix the incoming edge -1 and outgoing 1 at the next vertex.

Continuing this way along the “straightahead” path following edges labeled ± 1, we go through every vertex. Thus the reflection fixes all vertices, which is impossible (it is supposed to pair 3 and -2 and also 2 and -3).
Coxeter and Moser’s Question

Coxeter and Moser’s classic text on generators and relations for groups, included a full classification of the regular maps on the torus.
Coxeter and Moser’s Question

Coxeter and Moser’s classic text on generators and relations for groups, included a full classification of the regular maps on the torus
In the first edition, they conjectured that orientably regular maps in other surfaces were always reflexible,
Coxeter and Moser’s classic text on generators and relations for groups, included a full classification of the regular maps on the torus.
In the first edition, they conjectured that orientably regular maps in other surfaces were always reflexible.
Young Jack Edmonds saw that the K_7 could be generalized to K_p for any odd prime $p > 7$, using any primitive root mod p, just like 3 for mod 7. For example $CM(Z_1, (1, 2, 4, -3, -6, -1, -2, -4, 3, 6)$
Coxeter and Moser’s Question

Coxeter and Moser’s classic text on generators and relations for groups, included a full classification of the regular maps on the torus.

In the first edition, they conjectured that orientably regular maps in other surfaces were always reflexible.

Young Jack Edmonds saw that the K_7 could be generalized to K_p for any odd prime $p > 7$, using any primitive root mod p, just like 3 for mod 7. For example $CM(Z_1, (1, 2, 4, -3, -6, -1, -2, -4, 3, 6)$.

To do this he first had to understand these maps in terms of the cyclic order of edges at a vertex.
Coxeter and Moser’s Question

Coxeter and Moser’s classic text on generators and relations for groups, included a full classification of the regular maps on the torus.
In the first edition, they conjectured that orientably regular maps in other surfaces were always reflexible,
Young Jack Edmonds saw that the K_7 could be generalized to K_p for any odd prime $p > 7$, using any primitive root mod p, just like 3 for mod 7. For example $CM(\mathbb{Z}_1, (1, 2, 4, -3, -6, -1, -2, -4, 3, 6))$
To do this he first had to understand these maps in terms of the cyclic order of edges at a vertex.
It is interesting he called these cyclic orders rotations, since that word connotes some sort of movement. Of course he WAS thinking of rotations around vertices as movements, as well as a circular list.
Coxeter and Moser’s Question

Coxeter and Moser’s classic text on generators and relations for groups, included a full classification of the regular maps on the torus.

In the first edition, they conjectured that orientably regular maps in other surfaces were always reflexible.

Young Jack Edmonds saw that the K_7 could be generalized to K_p for any odd prime $p > 7$, using any primitive root mod p, just like 3 for mod 7. For example $CM(Z_1, (1, 2, 4, -3, -6, -1, -2, -4, 3, 6))$.

To do this he first had to understand these maps in terms of the cyclic order of edges at a vertex.

It is interesting he called these cyclic orders rotations, since that word connotes some sort of movement. Of course he WAS thinking of rotations around vertices as movements, as well as a circular list.

He wrote C and M: for the next edition, they gave his example in the Introduction, without mentioning Edmonds.
Coxeter and Moser’s Question

Coxeter and Moser’s classic text on generators and relations for groups, included a full classification of the regular maps on the torus.

In the first edition, they conjectured that orientably regular maps in other surfaces were always reflexible,

Young Jack Edmonds saw that the K_7 could be generalized to K_p for any odd prime $p > 7$, using any primitive root mod p, just like 3 for mod 7. For example $CM(Z_1, (1, 2, 4, -3, -6, -1, -2, -4, 3, 6))$

To do this he first had to understand these maps in terms of the cyclic order of edges at a vertex.

It is interesting he called these cyclic orders rotations, since that word connotes some sort of movement. Of course he WAS thinking of rotations around vertices as movements, as well as a circular list. He wrote C and M: for the next edition, they gave his example in the Introduction, without mentioning Edmonds.
Reflexible maps for other K_n

So there are chiral maps for K_n. Are they ALL chiral?

Theorem

(Biggs, James and Jones, Wilson). The only reflexibly regular maps with underlying graph K_n are for $n = 3, 4, 6$ and for $n = 6$ the map must be non-orientable.

Steps:
Reflexible maps for other K_n

So there are chiral maps for K_n. Are they ALL chiral?

Theorem
(Biggs, James and Jones, Wilson). The only reflexibly regular maps with underlying graph K_n are for $n = 3, 4, 6$ and for $n = 6$ the map must be non-orientable.

Steps:
1. Find all orientably regular maps with underlying graph K_n
So there are chiral maps for K_n. Are they ALL chiral?

Theorem
(Biggs, James and Jones, Wilson). The only reflexibly regular maps with underlying graph K_n are for $n = 3, 4, 6$ and for $n = 6$ the map must be non-orientable.

Steps:
1. Find all orientably regular maps with underlying graph K_n
2. Show they are all chiral for $n > 4$.
Reflexible maps for other K_n

So there are chiral maps for K_n. Are they ALL chiral?

Theorem

(Biggs, James and Jones, Wilson). The only reflexibly regular maps with underlying graph K_n are for $n = 3, 4, 6$ and for $n = 6$ the map must be non-orientable.

Steps:
1. Find all orientably regular maps with underlying graph K_n
2. Show they are all chiral for $n > 4$.
3. Deal with non-orientable maps
Classifying all orientably regular maps for K_n

First, the K_7 map generalizes to any finite fields $GF(q)$, where $q = p^n$. Let x generate the cyclic multiplicative group. The additive group is abelian $A = Z_p^n$. The Cayley map $CM(A, (1, x, x^2, x^3, \ldots x^{q-2})$ is is regular.
First, the K_7 map generalizes to any finite fields $GF(q)$, where $q = p^n$. Let x generate the cyclic multiplicative group. The additive group is abelian $A = Z_p^n$. The Cayley map $CM(A, (1, x, x^2, x^3, \cdots x^{q-2})$ is is regular.

It is chiral for the same reason as before for $p > 2$: any reflection fixing 1 will fix the additive p-cycle generated by 1, which means other edges at 0 are fixed besides 1 and -1.

Theorem

The only orientably regular maps with underlying K_n are the finite field maps.
Classifying all orientably regular maps for K_n

First, the K_7 map generalizes to any finite fields $GF(q)$, where $q = p^n$. Let x generate the cyclic multiplicative group. The additive group is abelian $A = Z_p^n$. The Cayley map $CM(A, (1, x, x^2, x^3, \cdots x^{q-2})$ is regular. It is chiral for the same reason as before for $p > 2$: any reflection fixing 1 will fix the additive p-cycle generated by 1, which means other edges at 0 are fixed besides 1 and -1.

Theorem

The only orientably regular maps with underlying K_n are the finite field maps.
Proof

Suppose that M is an orientably regular map with underlying graph K_n. Then $Aut^+(M)$ acts transitively on the vertex set such that no element fixes two vertices (otherwise it contains a reflection), making it a Frobenius group.
Proof

Suppose that \(M \) is an orientably regular map with underlying graph \(K_n \). Then \(Aut^+(M) \) acts transitively on the vertex set such that no element fixes two vertices (otherwise it contains a reflection), making it a **Frobenius group**.

By a classic theorem of Frobenius, \(Aut^+(M) \) contains a normal subgroup \(A \) that acts regularly on the vertex set and the stabilizer of a vertex, acting by conjugation on \(A \) injects into \(Aut(A) \).
Proof

Suppose that M is an orientably regular map with underlying graph K_n. Then $\text{Aut}^+(M)$ acts transitively on the vertex set such that no element fixes two vertices (otherwise it contains a reflection), making it a Frobenius group. By a classic theorem of Frobenius, $\text{Aut}^+(M)$ contains a normal subgroup A that acts regularly on the vertex set and the stabilizer of a vertex, acting by conjugation on A injects into $\text{Aut}(A)$. Since the stabilizer of a vertex is cyclic generated by a rotation y around that vertex, we have that conjugation by y gives an automorphism of A that cyclically permutes the non-identity elements of A.
Proof

Suppose that M is an orientably regular map with underlying graph K_n. Then $\text{Aut}^+(M)$ acts transitively on the vertex set such that no element fixes two vertices (otherwise it contains a reflection), making it a **Frobenius group**.

By a classic theorem of Frobenius, $\text{Aut}^+(M)$ contains a normal subgroup A that acts regularly on the vertex set and the stabilizer of a vertex, acting by conjugation on A injects into $\text{Aut}(A)$.

Since the stabilizer of a vertex is cyclic generated by a rotation y around that vertex, we have that conjugation by y gives an automorphism of A that cyclically permutes the non-identity elements of A.

Thus every element of A has the same order, which therefore must be a prime p; and the only characteristic subgroups are trivial, making A abelian. So $A = Z_p^n$ and mult by y is linear transformation with irred minimal poly of degree n etc.
Comments on chirality for finite field maps

The straightahead walk argument doesn’t work for $p = 2$ where valence is odd, or for p^n, for $n > 1$.
Comments on chirality for finite field maps

The straightahead walk argument doesn’t work for $p = 2$ where valence is odd, or for p^n, for $n > 1$. Instead use the fact that we have a balanced Cayley map over $A = \mathbb{Z}_p^n$ (balanced means either all generators order 2 or inverses antipodal).

General theorem for balanced case that any map auto is a group auto. so reflection across edge 1 is an additive automorphism
The straightahead walk argument doesn’t work for $p = 2$ where valence is odd, or for p^n, for $n > 1$.
Instead use the fact that we have a balanced Cayley map over $A = \mathbb{Z}_p^n$ (balanced means either all generators order 2 or inverses antipodal).
General theorem for balanced case that any map auto is a group auto. so reflection across edge 1 is an additive automorphism
Since reflection takes x to multiplicative inverse (rotation is $(1, x, x^2, x^3, \cdots x^{q-2})$), we have that $x \rightarrow x^{-1}$ is an additive automorphism on nonzero elements: $(1 + x)^{-1} = 1 + x^{-1}$ so $x = (1 + x)^2$
Comments on chirality for finite field maps

The straightahead walk argument doesn’t work for $p = 2$ where valence is odd, or for p^n, for $n > 1$. Instead use the fact that we have a balanced Cayley map over $A = \mathbb{Z}_p^n$ (balanced means either all generators order 2 or inverses antipodal).

General theorem for balanced case that any map auto is a group auto. so reflection across edge 1 is an additive automorphism.

Since reflection takes x to multiplicative inverse (rotation is $(1, x, x^2, x^3, \ldots x^{q-2})$), we have that $x \rightarrow x^{-1}$ is an additive automorphism on nonzero elements: $(1 + x)^{-1} = 1 + x^{-1}$ so $x = (1 + x)^2$

That happens only for $q = 3, 2^2$. That gives K_3 and K_4 (tetrahedron).
New proof: no algebra

This classic result on the chirality of regular follows from the following:
New proof: no algebra

This classic result on the chirality of regular follows from the following:

Theorem

(TWT 2011) The clique number of a regular (reflexible) map is $m = 2, 3, 4, 6$. For $m = 6$, the map must be non-orientable. For $m = 4, 6$ the graph underlying the map has a K_m factorization.
New proof: no algebra

This classic result on the chirality of regular follows from the following:

Theorem

(TWT 2011) The clique number of a regular (reflexible) map is $m = 2, 3, 4, 6$. For $m = 6$, the map must be non-orientable. For $m = 4, 6$ the graph underlying the map has a K_m factorization.

Note this handles also the non-orientable case of K_6. Also it says far more. And the proof is almost trivial!
Angle measure

The idea comes from maps, where each vertex has a natural cyclic order coming from a local orientation of the surface. We will show later how this works out when we only have a group A where the actions of A_v are naturally dihedral.
Angle measure

The idea comes from maps, where each vertex has a natural cyclic order coming from a local orientation of the surface. We will show later how this works out when we only have a group \(A \) where the actions of \(A_{v} \) are naturally dihedral.

Suppose that the cyclic order of vertices adjacent to \(v \) is \(u_1, u_2, \ldots, u_d \), where \(d \) is the valence of \(v \). Then we call \(u_i v u_j \) an angle at \(v \) with measure \(m(u_i v u_j) \) either \(|i - j| \) or \(d - |i - j| \), whichever is smaller. In particular, \(m(u_i v u_j) \leq d/2 \).
Angle measure

The idea comes from maps, where each vertex has a natural cyclic order coming from a local orientation of the surface. We will show later how this works out when we only have a group A where the actions of A_v are naturally dihedral.

Suppose that the cyclic order of vertices adjacent to v is u_1, u_2, \ldots, u_d, where d is the valence of v. Then we call $u_i v u_j$ an angle at v with measure $m(u_i v u_j)$ either $|i - j|$ or $d - |i - j|$, whichever is smaller. In particular, $m(u_i v u_j) \leq d/2$.

We are assuming here that the underlying graph G has no multiple edges. The definition easily extends using the cyclic order of incident edges rather than adjacent vertices.
The proof

Let M be a regular (reflexible) map. We observe that since automorphisms respect (or reverse) local orientations, they preserve angle measure.
The proof

Let M be a regular (reflexible) map. We observe that since automorphisms respect (or reverse) local orientations, they preserve angle measure.

Since the action of $\text{Aut}(M)$ is naturally dihedral at vertices, every angle uvw has an angle reflection, namely an automorphism f fixing v and interchanging u and w.
The proof

Let M be a regular (reflexible) map. We observe that since automorphisms respect (or reverse) local orientations, they preserve angle measure.

Since the action of $Aut(M)$ is naturally dihedral at vertices, every angle uvw has an angle reflection, namely an automorphism f fixing v and interchanging u and w.

It follows that if uvw is triangle (3-cycle), then the reflection at v means $m(vuw) = m(wvu)$. Since this is true at each vertex, the triangle uvw is equiangular, namely $m(uvw) = m(vwu) = m(wuv)$.
The case $a + b + c = d$

Suppose now that u, v, w, x induce K_4. There are three angles at u. Suppose their measures are:

$$m(vuw) = a, m(wux) = b, m(xuv) = c,$$
where $a \leq b \leq c$. Then either $a + b + c = d$ or $c = a + b$. Suppose first that $a + b + c = d$. Then in the tetrahedron u, v, w, x, there are four triangles: one has all angles a, one b, and one c. The last has angles $d - (a + b)$, $d - (b + c)$, $d - (c + a)$. Since all triangles are equiangular, we have $a = b = c = d/3$.

The case $a + b + c = d$

Suppose now that u, v, w, x induce K_4. There are three angles at u. Suppose their measures are:

$$m(vuw) = a, m(wux) = b, m(xuv) = c,$$

where $a \leq b \leq c$.

Then either $a + b + c = d$ or $c = a + b$
The case $a + b + c = d$

Suppose now that u, v, w, x induce K_4. There are three angles at u. Suppose their measures are:

$$m(vuw) = a, m(wux) = b, m(xuv) = c, \text{ where } a \leq b \leq c.$$

Then either $a + b + c = d$ or $c = a + b$

Suppose first that $a + b + c = d$. Then in the tetrahedron u, v, w, x, there are four triangles: one has all angles a, one b, and one c.
The case $a + b + c = d$

Suppose now that u, v, w, x induce K_4. There are three angles at u. Suppose their measures are:

$$m(\text{uvw}) = a, m(\text{wux}) = b, m(\text{xuv}) = c,$$

where $a \leq b \leq c$.

Then either $a + b + c = d$ or $c = a + b$

Suppose first that $a + b + c = d$. Then in the tetrahedron u, v, w, x, there are four triangles: one has all angles a, one b, and one c.

The last has angles $d - (a + b) = c, d - (b + c) = a, d - (c + a) = b$. Since all triangles are equiangular, we have $a = b = c = d/3$.
Consequences of $a = b = c$

We have all K_4 subgraphs are symmetrically situated at every vertex making angles $a = b = c = d/3$. In particular, each edge can be in one and only one K_4.
Consequences of $a = b = c$

We have all K_4 subgraphs are symmetrically situated at every vertex making angles $a = b = c = d/3$. In particular, each edge can be in one and only one K_4.

This means there is no K_5 and that G has a K_4 factorization.
Consequences of $a = b = c$

We have all K_4 subgraphs are symmetrically situated at every vertex making angles $a = b = c = d/3$. In particular, each edge can be in one and only one K_4.

This means there is no K_5 and that G has a K_4 factorization.
The case $a + b = c$

Again, we have four triangles in the tetrahedron: one has all angles a, one b, and one c.
The case $a + b = c$

Again, we have four triangles in the tetrahedron: one has all angles a, one b, and one c.
Now let’s look at the last triangle. Where the a and b angles meet, the third angle is $a + b = c$.
The case $a + b = c$

Again, we have four triangles in the tetrahedron: one has all angles a, one b, and one c. Now let's look at the last triangle. Where the a and b angles meet, the third angle is $a + b = c$. Where a and c meet, the third angle is $a + c$ or $d - (a + c)$. But since this angle must be c, we must have $d - (a + c)$, since $a + c = c$ is impossible. Similarly, the last angle in the triangle is $d - (b + c)$. So we have
Again, we have four triangles in the tetrahedron: one has all angles \(a\), one \(b\), and one \(c\).

Now let’s look at the last triangle. Where the \(a\) and \(b\) angles meet, the third angle is \(a + b = c\).

Where \(a\) and \(c\) meet, the third angle is \(a + c\) or \(d - (a + c)\). But since this angle must be \(c\), we must have \(d - (a + c)\), since \(a + c = c\) is impossible. Similarly, the last angle in the triangle is \(d - (b + c)\). So we have

\[
c = d - (a + c) = d - (b + c)
\]
The case \(a + b = c \)

Again, we have four triangles in the tetrahedron: one has all angles \(a \), one \(b \), and one \(c \).

Now let’s look at the last triangle. Where the \(a \) and \(b \) angles meet, the third angle is \(a + b = c \).

Where \(a \) and \(c \) meet, the third angle is \(a + c \) or \(d - (a + c) \). But since this angle must be \(c \), we must have \(d - (a + c) \), since \(a + c = c \) is impossible. Similarly, the last angle in the triangle is \(d - (b + c) \). So we have

\[
c = d - (a + c) = d - (b + c)
\]

So \(a = b, 2c + a = d, a = d/5, c = 2d/5 \)
Consequences of $a = b = d/5, c = 2d/5$

By the circular symmetry around a vertex, we must have a K_6 making all angles $d/5$ at any vertex.
Consequences of $a = b = d/5$, $c = 2d/5$

By the circular symmetry around a vertex, we must have a K_6 making all angles $d/5$ at any vertex. Thus here K_4 implies K_6.
Consequences of \(a = b = \frac{d}{5}, \ c = \frac{2d}{5} \)

By the circular symmetry around a vertex, we must have a \(K_6 \) making all angles \(\frac{d}{5} \) at any vertex. Thus here \(K_4 \) implies \(K_6 \).

Again every edge is in one and only one \(K_6 \), so \(G \) has no \(K_7 \) and \(G \) has a \(K_6 \) factorization
Non-orientability for the K_6 case

Let $B \subseteq Aut(M)$ be the subgroup stabilizing a K_6 subgraph $H \subseteq G$. By the 5-fold dihedral symmetry at each vertex of H, we have $|H| = 10 \cdot 6 = 60$. But if M were orientable, the orientation-preserving elements of B would form a subgroup of index two, a contradiction (Note: H contains reflections, so H is not orientation-preserving.)
Non-orientability for the K_6 case

Let $B \subset Aut(M)$ be the subgroup stabilizing a K_6 subgraph $H \subset G$. By the 5-fold dihedral symmetry at each vertex of H, we have $|H| = 10 \cdot 6 = 60$.

It is then easy to show A is $(2,3,5)$ generated, making it A_5. Thus B has no subgroup of index two.
Non-orientability for the K_6 case

Let $B \subset Aut(M)$ be the subgroup stabilizing a K_6 subgraph $H \subset G$. By the 5-fold dihedral symmetry at each vertex of H, we have $|H| = 10 \cdot 6 = 60$.

It is then easy to show A is $(2, 3, 5)$ generated, making it A_5. Thus B has no subgroup of index two.

But if M were orientable, the orientation-preserving elements of B would form a subgroup of index two, a contradiction (Note: H contains reflections, so H is not orientation-preserving.)
The case for graphs, instead of maps

Suppose that $A \subset Aut(G)$ with naturally dihedral vertex stabilizers. Then clearly G is edge-transitive.
The case for graphs, instead of maps

Suppose that \(A \subset Aut(G) \) with naturally dihedral vertex stabilizers. Then clearly \(G \) is edge-transitive.

Suppose that \(G \) contains a triangle \(uvw \). By the natural dihedral action of \(A_v \), some element of \(A_v \) reverses the edge \(uw \), so every edge has an element of \(A \) reversing the edge, making \(A \) vertex-transitive.
The case for graphs, instead of maps

Suppose that $A \subset Aut(G)$ with naturally dihedral vertex stabilizers. Then clearly G is edge-transitive. Suppose that G contains a triangle uvw. By the natural dihedral action of A_v, some element of A_v reverses the edge uw, so every edge has an element of A reversing the edge, making A vertex-transitive.

Thus if G has clique number $n > 2$, then A is vertex-transitive.
The case for graphs, instead of maps

Suppose that $A \subset Aut(G)$ with naturally dihedral vertex stabilizers. Then clearly G is edge-transitive. Suppose that G contains a triangle uvw. By the natural dihedral action of A_v, some element of A_v reverses the edge uw, so every edge has an element of A reversing the edge, making A vertex-transitive.

Thus if G has clique number $n > 2$, then A is vertex-transitive. Now choose any vertex and any automorphism f generating the index two cyclic subgroup of A_v. For each other vertex v choose an automorphism $g(v) = u$ and use gfg^{-1} to define a cyclic order around u.
The case for graphs, instead of maps

Suppose that $A \subset Aut(G)$ with naturally dihedral vertex stabilizers. Then clearly G is edge-transitive.

Suppose that G contains a triangle uvw. By the natural dihedral action of A_v, some element of A_v reverses the edge uw, so every edge has an element of A reversing the edge, making A vertex-transitive.

Thus if G has clique number $n > 2$, then A is vertex-transitive.

Now choose any vertex and any automorphism f generating the index two cyclic subgroup of A_v. For each other vertex v choose an automorphism $g(v) = u$ and use gfg^{-1} to define a cyclic order around u.

This cyclic order at each vertex can now be used to define an angle measure that is invariant under A, allowing us to apply the previous map argument.
Examples of maps for K_4 and K_6

For K_4, there is the family of groups from Conder, Širáň, Tucker (JEMS 2010):

$G(3, 3, n) = \langle X, Y : X^{3n} = Y^{3n} = (XY)^2 = 1, X^{12} Y^{12} = 1 \rangle$

Marston Conder has found, with the help of Magma, a family of infinitely many examples for K_4 where the underlying graph has no multiple edges. Same for K_6.
Examples of maps for \(K_4 \) and \(K_6 \)

For \(K_4 \), there is the family of groups from Conder, Širáň, Tucker (JEMS 2010):
\[
G(3, 3, n) = \langle X, Y : X^{3n} = Y^{3n} = (XY)^2 = 1, X^{12}Y^{12} = 1 \rangle
\]
There is clearly an automorphism inverting both \(X \) and \(Y \), making the associated orientably regular map reflexible.
Examples of maps for K_4 and K_6

For K_4, there is the family of groups from Conder, Širáň, Tucker (JEMS 2010):

$G(3, 3, n) = \langle X, Y : X^{3n} = Y^{3n} = (XY)^2 = 1, X^{12}Y^{12} = 1 \rangle$

There is clearly an automorphism inverting both X and Y, making the associated orientably regular map reflexible.
It is not hard to show that $\langle X^3 \rangle$ and $\langle Y^3 \rangle$ are normal, making the underlying graph an n-multiple edge version of K_4.
Examples of maps for K_4 and K_6

For K_4, there is the family of groups from Conder, Širáň, Tucker (JEMS 2010):

$G(3, 3, n) = \langle X, Y : X^{3n} = Y^{3n} = (XY)^2 = 1, X^{12} Y^{12} = 1 \rangle$

There is clearly an automorphism inverting both X and Y, making the associated orientably regular map reflexible.

It is not hard to show that $\langle X^3 \rangle$ and $\langle Y^3 \rangle$ are normal, making the underlying graph an n-multiple edge version of K_4.

For K_6, a similar construction works with the groups

$G(3, 5, n) = \langle X, Y : X^{3n} = Y^{5n} = (XY)^2 = 1, X^{60} Y^{60} = 1 \rangle$
Examples of maps for K_4 and K_6

For K_4, there is the family of groups from Conder, Širáň, Tucker (JEMS 2010):

$G(3, 3, n) = \langle X, Y : X^{3n} = Y^{3n} = (XY)^2 = 1, X^{12}Y^{12} = 1 \rangle$

There is clearly an automorphism inverting both X and Y, making the associated orientably regular map reflexible.

It is not hard to show that $\langle X^3 \rangle$ and $\langle Y^3 \rangle$ are normal, making the underlying graph an n-multiple edge version of K_4.

For K_6, a similar construction works with the groups

$G(3, 5, n) = \langle X, Y : X^{3n} = Y^{5n} = (XY)^2 = 1, X^{60}Y^{60} = 1 \rangle$

Mariston Conder has found, with the help of Magma, a family of infinitely many examples for K_4 where the underlying graph has no multiple edges. Same for K_6.