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The embedding of K7 in the torus

As we all know, K7 embeds in the torus( there is a map of 7
countries where each touches each other so the map requires 7
colors).

This embedding leads us in a number of different directions:

1. The Ringel-Youngs Map Color Theorem, including current and
voltage graphs

2. Cayley graphs and Cayley maps

3. Rotation systems for embeddings

4. Regular maps, chiral and reflexible

I am mostly interested in the last item.
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Ringel-Youngs and Cayley graphs

From the beginning, the problem is to describe complicated maps
with arbitrarily large number of vertices, in order to find minimal
embeddings for Kn (we’ll color vertices rather than faces).

Solution: use groups, the world’s most concise data structure. In
other words, hope that the minimal maps have lots of symmetry.
A Cayley graph C (A,X ) for group A and generating set X has A
as vertex set and an edge (directed and colored x) from a to ax for
all a ∈ A and x ∈ X . If x2 = 1, we often identify the pair of
directed edges (a, ax) and (ax , a) to a single undirected edge.
Main fact; the action of A given by left multiplication by b is a
graph isomorphism: a→ ax goes to ba→ bax . Thus A acts
regularly (transitively without fixed points) on the vertex set of
C (A,X ).
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Rotation systems

To define an orientable embedding for a graph G , we only need to
give for each vertex v a cyclic order of the edges incident to v ,
that would be induced by an orientation of the embedding surface.
The collection of all these cyclic orders is called a rotation system.
To see the embedding surface associated with a rotation system,
just thicken each vertex to a disk, thicken each edge to a band and
attach around each vertex-disk by the order given by the rotation.
The result is a thickening of the graph to a surface with boundary.

Now just attach disks on each boundary component (face) to get a
closed surface.
The idea os specifying an embedding for a given graph G this way
is due to Heffter (1895) and Edmonds(1956). Important

observation: any graph automorphism that respects the rotation
(cyclic order at each vertex) induces an automorphism of the
embedding (takes faces to faces).
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The Cayley map for K7 in the torus

The idea is to describe an embedding (or “map”) with lots of
symmetry.

bf Example: K7 in the torus Begin with Cayley graph
C (Z7, {1, 2, 3} (view Z7 additively). At every vertex we have edges
going out labeled 1, 2, 3 and in −1,−2,−3.
Define a rotation system by simply specifying the order
(1, 3, 2,−1,−3,−2) at every vertex.
Call this the Cayley map CM(Z7, (1, 3, 2,−1,−3,−2), namely a
Cayley graph together with a cyclic order of X ∪ X−1.
We can trace out the faces: start at vertex 0, go out on 1, coming
into vertex 1 on −1, follow rotation to −3 and leave to vertex −2,
arriving there on 3, follow rotation to 2, go out returning to 0
arriving on −2, and follow rotation back to 1.
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Automorphisms

We already know that CM(Z7, (1, 3, 2,−1,−3,−2) is vertex
transitive by looking at“left addition” (remember we are looking at
Z7 additively.

Now consider multiplication by 3, which is an additive
automorphism of Z7. It respects the rotation so it is a map
automorphism.
This means our map has rotational 6-fold symmetry at every
vertex, making it orientably regular
Orientably regular maps are analagous to the Platonic solids,
having full rotation symmetry at every vertex, every face-center,
and every edge-midpoint.
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Chirallity of K7 in the torus

An orientably regular map may also have orientation-reversing
“reflection”. If so it is called reflexible; if not it is chiral.

We claim that CM(Z7, (1, 3, 2,−1,−3,−2) is chiral!
Suppose not. Then there would be dihedral symmetry at every
vertex so there would be a reflection fixing 0 and the outgoing
edge 1 and the incoming edge −1 (since it is antitpodal to 1).
But then it would also fix the incoming edge −1 and outgoing 1 at
the next vertex.
Continuing this way along the “straightahead” path following
edges labeled ±1, we go through every vertex. Thus the reflection
fixes all vertices, which is impossible (it is supposed to pair 3 and
−2 and also 2 and −3).
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Coxeter and Moser’s Question

Coxeter and Moser’s classic text on generators and relations for
groups, included a full classification of the regular maps on the
torus

In the first edition, they conjectured that orientably regular maps
in other surfaces were always reflexible,
Young Jack Edmonds saw that the K7 could be generalized to Kp

for any odd prime p > 7, using any primitive root mod p, just like 3
for mod 7. For example CM(Z11, (1, 2, 4,−3,−6,−1,−2,−4, 3, 6)
To do this he first had to understand these maps in terms of the
cyclic order of edges at a vertex.
It is interesting he called these cyclic orders rotations, since that
word connotes some sort of movement. Of course he WAS thinking
of rotations around vertices as movements, as well as a circular list.
He wrote C and M: for the next edition, they gave his example in
the Introduction, without mentioning Edmonds.
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Reflexible maps for other Kn

So there are chiral maps for Kn. Are they ALL chiral?

Theorem
(Biggs, James and Jones, Wilson). The only reflexibly regular
maps with underlying graph Kn are for n = 3, 4, 6 and for n = 6
the map must be non-orientable.

Steps:

1. Find all orientably regular maps with underlying graph Kn

2. Show they are all chiral for n > 4.
3. Deal with non-orientable maps
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Classifying all orientably regular maps for Kn

First, the K7 map generalizes to any finite fields GF (q), where
q = pn. Let x generate the cyclic multiplicative group. The
additive group is abelian A = Zn

p . The Cayley map
CM(A, (1, x , x2, x3, · · · xq−2 is is regular.

It is chiral for the same reason as before for p > 2: any reflection
fixing 1 will fix the additive p-cycle generated by 1, which means
other edges at 0 are fixed besides 1 and −1.

Theorem
The only orientably regular maps with underlying Kn are the finite
field maps.
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Proof

Suppose that M is an orientably regular map with underlying graph
Kn. Then Aut+(M) acts transitively on the vertex set such that no
element fixes two vertices (otherwise it contains a reflection),
making it a Frobenius group.

By a classic theorem of Frobenius, Aut+(M) contains a normal
subgroup A that acts regularly on the vertex set and the stabilizer
of a vertex, acting by conjugation on A injects into Aut(A).
Since the stabilizer of a vertex is cyclic generated by a rotation y
around that vertex, we have that conjugation by y gives an
automorphism of A that cyclically permutes the non-identity
elements of A.
Thus every element of A has the same order, which therefore must
be a prime p; and the only characteristic subgroups are trivial,
making A abelian. So A = Zn

p and mult by y is linear
transformation with irred minimal poly of degree n etc.
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Comments on chirality for finite field maps

The straightahead walk argument doesn’t work for p = 2 where
valence is odd, or for pn, for n > 1.

Instead use the fact that we have a balanced Cayley map over
A = Zn

p (balanced means either all generators order 2 or inverses
antipodal).
General theorem for balanced case that any map auto is a group
auto. so reflection across edge 1 is an additive automorphism
Since reflection takes x to multiplicative inverse (rotation is
(1, x , x2, x3, · · · xq−2)), we have that x → x−1 is an additive
automophism on nonzero elements: (1 + x)−1 = 1 + x−1 so
x = (1 + x)2

That happens only for q = 3, 22. That gives K3 and K4

(tetrahedron).
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New proof: no algebra

This classic result on the chirality of regular follows from the
following:

Theorem
(TWT 2011) The clique number of a regular (reflexible) map is
m = 2, 3, 4, 6. For m = 6, the map must be non-orientable. For
m = 4, 6 the graph underlying the map has a Km factorization.

Note this handles also the non-orientable case of K6. Also it says
far more. And the proof is almost trivial!
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Angle measure

The idea comes from maps, where each vertex has a natural cyclic
order coming from a local orientation of the surface. We will show
later how this works out when we only have a group A where the
actions of Av are naturally dihedral.

Suppose that the cyclic order of vertices adjacent to v is
u1, u2, · · · ud , where d is the valence of v . Then we call uivuj an
angle at v with measure m(uivuj) either |i − j | or d − |i − j |,
whichever is smaller. In particular, m(uivuj) ≤ d/2.
We are assuming here that the underlying graph G has no multiple
edges. The definition easily extends using the cyclic order of
incident edges rather than adjacent vertices.
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The proof

Let M be a regular (reflexible) map. We observe that since
automorphisms respect (or reverse) local orientations, they
preserve angle measure.

Since the action of Aut(M) is naturally dihedral at vertices, every
angle uvw has an angle reflection, namely an automorphism f
fixing v and interchanging u and w .

It follows that if uvw is triangle (3-cycle), then the reflection at v
means m(vuw) = m(wvu). Since this is true at each vertex, the
triangle uvw is equiangular, namely m(uvw) = m(vwu) = m(wuv).
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The case a + b + c = d

Suppose now that u, v ,w , x induce K4. There are three angles at
u. Suppose their measures are:

m(vuw) = a,m(wux) = b,m(xuv) = c , where a ≤ b ≤ c .

Then either a + b + c = d or c = a + b

Suppose first that a + b + c = d . Then in the tetrahedron
u, v ,w , x , there are four triangles: one has all angles a, one b, and
one c .
The last has angles
d − (a + b) = c , d − (b + c) = a, d − (c + a) = b. Since all
triangles are equiangular, we have a = b = c = d/3.
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Consequences of a = b = c

We have all K4 subgraphs are symmetrically situated at every
vertex making angles a = b = c = d/3. In particular, each edge
can be in one and only one K4.

This means there is no K5 and that G has a K4 factorization.
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The case a + b = c

Again, we have four triangles in the tetrahedron: one has all angles
a, one b, and one c .

Now let’s look at the last triangle. Where the a and b angles meet,
the third angle is a + b = c .
Where a and c meet, the third angle is a + c or d − (a + c). But
since this angle must be c , we must have d − (a + c), since
a + c = c is impossible. Similarly, the last angle in the triangle is
d − (b + c). So we have

c = d − (a + c) = d − (b + c)

So a = b, 2c + a = d , a = d/5, c = 2d/5
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Consequences of a = b = d/5, c = 2d/5

By the circular symmetry around a vertex, we must have a K6

making all angles d/5 at any vertex.

Thus here K4 implies K6.

Again every edge is in one and only one K6, so G has no K7 and G
has a K6 factorization
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Non-orientability for the K6 case

Let B ⊂ Aut(M) be the subgroup stabilizing a K6 subgraph
H ⊂ G . By the 5-fold dihedral symmetry at each vertex of H, we
have |H| = 10 · 6 = 60.

It is then easy to show A is (2, 3, 5) generated, making it A5. Thus
B has no subgroup of index two.

But if M were orientable, the orientation-preserving elements of B
would form a subgroup of index two, a contradiction (Note: H
contains reflections, so H is is not orientation-preserving.)
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The case for graphs, instead of maps

Suppose that A ⊂ Aut(G ) with naturally dihedral vertex
stabilizers. Then clearly G is edge-transitive.

Suppose that G contains a triangle uvw . By the natural dihedral
action of Av , some element of Av reverses the edge uw , so every
edge has an element of A reversing the edge, making A
vertex-transitive.

Thus if G has clique number n > 2, then A is vertex-transitive.
Now choose any vertex and any automorphism f generating the
index two cyclic subgroup of Av . For each other vertex v choose
an automorphism g(v) = u and use gfg−1 to define a cyclic order
around u.
This cyclic order at each vertex can now be used to define an angle
measure that is invariant under A, allowing us to apply the
previous map argument.
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Examples of maps for K4 and K6

For K4, there is the family of groups from Conder, Širà ň, Tucker
(JEMS 2010):
G (3, 3, n) = 〈X ,Y : X 3n = Y 3n = (XY )2 = 1,X 12Y 12 = 1〉

There is clearly an automorphism inverting both X and Y , making
the associated orientably regular map reflexible.
It is not hard to show that 〈X 3〉 and 〈Y 3〉 are normal, making the
underlying graph an n-multiple edge version of K4.

For K6, a similar construction works with the groups
G (3, 5, n) = 〈X ,Y : X 3n = Y 5n = (XY )2 = 1,X 60Y 60 = 1〉
Marston Conder has found, with the help of Magma, a family of
infinitely many examples for K4 where the underlying graph has no
multiple edges. Same for K6.
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