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domination: cover V(G) with disjoint stars — γ(G)

Def. rainbow subgraph: in an edge-colored graph, a
subgraph whose edges have distinct colors

Def. rainbow edge-coloring: use rainbow matchings
χ̂′(G) = min{k : G has a rainbow k-edge-coloring}

Def. rainbow domination: use disjoint rainbow stars
γ̂(G) = min{k: V(G) covered by k disjoint rainb. stars}

If the edge-coloring is rainbow, then χ̂′(G) = χ′(G).

If the edge-coloring is proper, then γ̂(G) = γ(G).
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Conj. (Ryser [1967]) For odd n, proper n-edge-colorings
of Kn,n have rainbow perfect matchings.

Def. color degree d̂G() = #colors incident to .

min color degree δ̂(G); max color degree Δ̂(G).

rainbow matching # α̂′(G) = mx |rainbow matching|.
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Thm. (Kostochka–Yancey [2012]) α̂′(G) ≥
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2
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With Pfender: α̂′(G) ≥ δ̂(G) when n ≥ 5.5(δ̂(G))2.
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Thm. When G is t-tolerant (and no isolated vertices),
γ̂(G) =

t
t+1

n ⇔ each component is a t-flare
(or monochr. C3 (t = 2) or properly edge-colored C4 (t = 1)).
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Let k = n/2. Let A and B be Latin squares of order k,
using 1, . . . , k in A and k + 1, . . . ,2k in B. Let C =
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A B
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.

No transversal! k odd ⇒ must use ≥ ⌈k/2⌉ positions
in some quadrant; others give ≤⌊k/2⌋, so α̂′(G) ≤n−1.

Thus χ̂′(G) ≥
n2
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> n+ 1 = Δ(G) + 1.
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Let F0 = G and 0 = 1. For  > 0, obtain F from F−1 by

deleting a large rainbow matching M−1; let  =
|E(F)|

(
n

2)
.

By the corollary, |M−1| ≥
|E(F−1)|

nt(t+1)
= −1

n−1
2t(t+1)

.

Let j be the least index such that j
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Fj is covered by |E(Fj)| single-edge rainbow matchings.
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2t(t+1)
+ 1+

2t(t+1)

n−1

n(n−1)

2

< t(t + 1)n ln(n− 1).

Thus χ̂′(G) < t(t + 1)n lnn.

Note: Below: a t-tolerant edge-colored graph G with
avg color degree (t + 1)/2, but δ̂(H) ≤ 1 for all H ⊆ G.
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Pf. For  ∈ V(G), form S at  by including a random
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Set p = ln k
k
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Note that γ̂(G) ≤ |A|+ |B|.

Note  ∈ B if  /∈ A and [ /∈ A or  /∈ S for  ∈ N()].
Thus P( ∈ B) ≤ (1− p)[(1− p) + p(1− 1/ t)]δ(G).
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Prop. γ̂(G) ≤ n− Δ̂(G), which is sharp even for highly
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Pf. A largest rainbow star covers Δ̂(G) + 1 vertices.

Sharpness: Construction with Δ̂(G) = k.
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Let U = independent set of size n− k.

Let W ={1, . . . ,k}, centers of monochromatic stars.

Make W a clique using edges with distinct new colors.

Now d̂() = k for all , but γ̂(G) = n− k.

Note: γ̂(G)/n→ 1, but t/n→ 1.
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Thm. γ̂(G) ≤
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n when G is t-tolerant and δ(G) ≥ 1.

Lem. If G has no isolated vertices, then V(G) can be
covered by a family F of disjoint nontrivial stars in G.

Pf. A smallest edge cover has no three edges forming a
triangle or a path, so it forms disjoint nontrival stars.

Pf. (of Thm) From the family F, consider F ∈ F with
center F. A largest rainbow star in F has d̂F(F) edges.

Let F ′ consist of a largest rainbow star inside each
member of F. Let s =

∑

F∈F d̂F(F) and k = |F
′|.

F
′ covers k + s vertices with k rainbow stars.

Add 1-vertex stars; now γ̂(G) ≤ n− s. Note that s ≥ k.

If F ∈ F, then |V(F)| ≤ t · d̂F(F) + 1.
Summing over F yields n ≤ ts+ k ≤ (t + 1)s.

Thus γ̂(G) ≤ n− s ≤
t

t+1
n, since s ≥

1
t+1

n.
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t+1

n.

Thm. Equality ⇒ every component is a t-flare
(or monochr. C3 (t = 2) or properly edge-colored C4 (t = 1)).

• For t = 1 (where γ̂(G) = γ(G)), Payan–Xuong [1982] and

Fink–Jacobson–Kinch–Roberts [1985] char’zd γ(G) = n/2.
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If (t+1) ∤ |V(C)|, then strict inequality for C (and G).

Now (t+1) ∤ n, and again the inequality is strict for G.
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Now T has a rainbow star F at  with k leaves.
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(n− ℓ− 1)

Simplifies to ℓ+1
t+1
≥ k. Also t-tolerant ⇒ k ≥
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t
.

From ℓ+1
t+1
≥ k ≥

ℓ
t
, conclude ℓ = t and k = 1.

∴ Every spanning tree is a t-flare.

Claim: No other edges at leaves of a spanning tree T.
(Otherwise, some spanning tree is not a t-flare.)

(The exceptions: monochr. C3 and properly colored C4.)
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