Rainbow Edge-coloring and Rainbow Domination

Douglas B. West

Department of Mathematics University of Illinois at Urbana-Champaign west@math.uiuc.edu

slides available on DBW preprint page

Joint work with Timothy D. LeSaulnier

edge-coloring: cover E(G) with matchings — $\chi'(G)$ domination: cover V(G) with disjoint stars — $\gamma(G)$

edge-coloring: cover E(G) with matchings — $\chi'(G)$ domination: cover V(G) with disjoint stars — $\gamma(G)$

Def. rainbow subgraph: in an edge-colored graph, a subgraph whose edges have distinct colors

edge-coloring: cover E(G) with matchings — $\chi'(G)$ domination: cover V(G) with disjoint stars — $\gamma(G)$

Def. rainbow subgraph: in an edge-colored graph, a subgraph whose edges have distinct colors

Def. rainbow edge-coloring: use rainbow matchings $\hat{\chi}'(G) = \min\{k: G \text{ has a rainbow } k\text{-edge-coloring}\}$

edge-coloring: cover E(G) with matchings — $\chi'(G)$ domination: cover V(G) with disjoint stars — $\gamma(G)$

Def. rainbow subgraph: in an edge-colored graph, a subgraph whose edges have distinct colors

Def. rainbow edge-coloring: use rainbow matchings $\hat{\chi}'(G) = \min\{k: G \text{ has a rainbow } k\text{-edge-coloring}\}$

Def. rainbow domination: use disjoint rainbow stars $\hat{\gamma}(G) = \min\{k: V(G) \text{ covered by } k \text{ disjoint rainb. stars}\}$

edge-coloring: cover E(G) with matchings — $\chi'(G)$ domination: cover V(G) with disjoint stars — $\gamma(G)$

Def. rainbow subgraph: in an edge-colored graph, a subgraph whose edges have distinct colors

Def. rainbow edge-coloring: use rainbow matchings $\hat{\chi}'(G) = \min\{k: G \text{ has a rainbow } k\text{-edge-coloring}\}$

Def. rainbow domination: use disjoint rainbow stars $\hat{\gamma}(G) = \min\{k: V(G) \text{ covered by } k \text{ disjoint rainb. stars}\}$

If the edge-coloring is rainbow, then $\hat{\chi}'(G) = \chi'(G)$. If the edge-coloring is proper, then $\hat{\gamma}(G) = \gamma(G)$.

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row & column).

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row & column).

Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n,n}$ have rainbow perfect matchings.

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row & column).

Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n,n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_G(v) = \#$ colors incident to v.

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row & column).

Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n,n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_G(v) = \#$ colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$.

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row & column).

Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n,n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_G(v) = \#$ colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}'(G) = \max |\text{rainbow matching}|$.

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row & column).

Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n,n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_G(v) = \#$ colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}'(G) = \max |\text{rainbow matching}|$.

• $\hat{\alpha}'(K_4) = 1$ when properly colored. Assume $\hat{\delta}(G) \ge 4$.

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row & column).

Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n,n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_G(v) = \#$ colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}'(G) = \max |\text{rainbow matching}|$.

• $\hat{\alpha}'(K_4) = 1$ when properly colored. Assume $\hat{\delta}(G) \ge 4$.

Conj. (Wang–Li [2008]) $\hat{\alpha}'(G) \ge \left\lceil \frac{1}{2} \hat{\delta}(G) \right\rceil$. They did $\frac{5}{12}$.

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row & column).

Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n,n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_G(v) = \#$ colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}'(G) = \max |\text{rainbow matching}|$.

• $\hat{\alpha}'(K_4) = 1$ when properly colored. Assume $\hat{\delta}(G) \ge 4$.

Conj. (Wang–Li [2008]) $\hat{\alpha}'(G) \ge \left\lceil \frac{1}{2} \hat{\delta}(G) \right\rceil$. They did $\frac{5}{12}$.

Thm. (LeSaulnier-Stocker-Wenger-West [2010]) $\geq \left|\frac{1}{2}\hat{\delta}(G)\right|$.

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row & column).

Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n,n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_G(v) = \#$ colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}'(G) = \max |\text{rainbow matching}|$.

• $\hat{\alpha}'(K_4) = 1$ when properly colored. Assume $\hat{\delta}(G) \ge 4$.

Conj. (Wang–Li [2008]) $\hat{\alpha}'(G) \ge \left\lceil \frac{1}{2} \hat{\delta}(G) \right\rceil$. They did $\frac{5}{12}$.

Thm. (LeSaulnier-Stocker-Wenger-West [2010]) $\geq \lfloor \frac{1}{2} \hat{\delta}(G) \rfloor$.

Thm. (Kostochka–Yancey [2012]) $\hat{\alpha}'(G) \ge \left\lceil \frac{1}{2}\hat{\delta}(G) \right\rceil$.

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row & column).

Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n,n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_G(v) = \#$ colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}'(G) = \max |\text{rainbow matching}|$.

• $\hat{\alpha}'(K_4) = 1$ when properly colored. Assume $\hat{\delta}(G) \ge 4$.

Conj. (Wang–Li [2008]) $\hat{\alpha}'(G) \ge \left\lceil \frac{1}{2} \hat{\delta}(G) \right\rceil$. They did $\frac{5}{12}$.

Thm. (LeSaulnier-Stocker-Wenger-West [2010]) $\geq \lfloor \frac{1}{2} \hat{\delta}(G) \rfloor$.

Thm. (Kostochka–Yancey [2012]) $\hat{\alpha}'(G) \ge \left\lceil \frac{1}{2}\hat{\delta}(G) \right\rceil$. With Pfender: $\hat{\alpha}'(G) \ge \hat{\delta}(G)$ when $n \ge 5.5(\hat{\delta}(G))^2$.

Def. An edge-colored graph is *t*-tolerant if its monochromatic stars all have at most *t* edges.

Def. An edge-colored graph is *t*-tolerant if its monochromatic stars all have at most *t* edges.

Thm. If G is t-tolerant, then $\hat{\chi}'(G) < t(t+1)n \ln n$. Also, examples exist with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

Def. An edge-colored graph is *t*-tolerant if its monochromatic stars all have at most *t* edges.

Thm. If G is t-tolerant, then $\hat{\chi}'(G) < t(t+1)n \ln n$. Also, examples exist with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

Thm. for rainbow domination (where $k = \frac{\delta(G)}{t} + 1$): classical generalized

$$\begin{split} \gamma(G) &\leq n - \Delta(G) \quad \text{Berge [1962]} \quad \hat{\gamma}(G) \leq n - \hat{\Delta}(G) \\ \gamma(G) &\leq \frac{1}{2}n \quad \text{Ore [1962] (no isol.)} \quad \hat{\gamma}(G) \leq \frac{t}{t+1}n \\ \gamma(G) &\leq \frac{1 + \ln(\delta(G) + 1)}{\delta(G) + 1}n \quad \overset{\text{Arnautov [1974]}}{\underset{\text{Payan [1975]}}{\text{Payan [1975]}}} \quad \hat{\gamma}(G) \leq \frac{1 + \ln k}{k}n \end{split}$$

Def. An edge-colored graph is *t*-tolerant if its monochromatic stars all have at most *t* edges.

Thm. If G is t-tolerant, then $\hat{\chi}'(G) < t(t+1)n \ln n$. Also, examples exist with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

Thm. for rainbow domination (where $k = \frac{\delta(G)}{t} + 1$): classical generalized

$$\begin{split} \gamma(G) &\leq n - \Delta(G) \quad \text{Berge [1962]} \quad \hat{\gamma}(G) \leq n - \hat{\Delta}(G) \\ \gamma(G) &\leq \frac{1}{2}n \quad \text{Ore [1962] (no isol.)} \quad \hat{\gamma}(G) \leq \frac{t}{t+1}n \\ \gamma(G) &\leq \frac{1 + \ln(\delta(G) + 1)}{\delta(G) + 1}n \quad \overset{\text{Arnautov [1974]}}{\underset{\text{Payan [1975]}}{\text{Payan [1975]}}} \quad \hat{\gamma}(G) \leq \frac{1 + \ln k}{k}n \end{split}$$

Thm. When G is t-tolerant (and no isolated vertices), $\hat{\gamma}(G) = \frac{t}{t+1}n \iff$ each component is a t-flare (or monochr. C_3 (t = 2) or properly edge-colored C_4 (t = 1)).

Ex. *t*-tolerant edge-colored G with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

Ex. *t*-tolerant edge-colored G with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of K_{tp} . Form *G* by identifying color classes in *t*-tuples.

Ex. *t*-tolerant edge-colored G with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of K_{tp} . Form *G* by identifying color classes in *t*-tuples. Now $\hat{\alpha}'(G) \leq p$ (there are only *p* colors).

Ex. *t*-tolerant edge-colored G with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of K_{tp} . Form G by identifying color classes in t-tuples. Now $\hat{\alpha}'(G) \leq p$ (there are only p colors).

So, $\hat{\chi}'(G) \ge \frac{1}{p} |E(G)| \ge \frac{t}{2} (tp-1) = \frac{t}{2} (n-1) = \frac{t}{2} \Delta(G).$

Ex. *t*-tolerant edge-colored G with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of K_{tp} . Form G by identifying color classes in t-tuples. Now $\hat{\alpha}'(G) \leq p$ (there are only p colors).

So, $\hat{\chi}'(G) \ge \frac{1}{p} |E(G)| \ge \frac{t}{2} (tp-1) = \frac{t}{2} (n-1) = \frac{t}{2} \Delta(G).$

Ex. $\hat{\chi}'(G) > \Delta(G) + 1$ can occur even for a properly *n*-edge-colored copy of $K_{n,n}$, where $n \equiv 2 \mod 4$.

Ex. *t*-tolerant edge-colored G with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of K_{tp} . Form G by identifying color classes in t-tuples. Now $\hat{\alpha}'(G) \leq p$ (there are only p colors).

So, $\hat{\chi}'(G) \ge \frac{1}{p} |E(G)| \ge \frac{t}{2} (tp-1) = \frac{t}{2} (n-1) = \frac{t}{2} \Delta(G).$

Ex. $\hat{\chi}'(G) > \Delta(G) + 1$ can occur even for a properly *n*-edge-colored copy of $K_{n,n}$, where $n \equiv 2 \mod 4$.

Latin square of order *n*; cover by partial transversals.

Ex. *t*-tolerant edge-colored G with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of K_{tp} . Form G by identifying color classes in t-tuples. Now $\hat{\alpha}'(G) \leq p$ (there are only p colors).

So, $\hat{\chi}'(G) \ge \frac{1}{p} |E(G)| \ge \frac{t}{2} (tp-1) = \frac{t}{2} (n-1) = \frac{t}{2} \Delta(G).$

Ex. $\hat{\chi}'(G) > \Delta(G) + 1$ can occur even for a properly *n*-edge-colored copy of $K_{n,n}$, where $n \equiv 2 \mod 4$.

Latin square of order *n*; cover by partial transversals. Let k = n/2. Let *A* and *B* be Latin squares of order *k*, using 1,..., *k* in *A* and k + 1,..., 2k in *B*. Let $C = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$.

Ex. *t*-tolerant edge-colored G with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of K_{tp} . Form G by identifying color classes in t-tuples. Now $\hat{\alpha}'(G) \leq p$ (there are only p colors).

So, $\hat{\chi}'(G) \ge \frac{1}{p} |E(G)| \ge \frac{t}{2} (tp-1) = \frac{t}{2} (n-1) = \frac{t}{2} \Delta(G).$

Ex. $\hat{\chi}'(G) > \Delta(G) + 1$ can occur even for a properly *n*-edge-colored copy of $K_{n,n}$, where $n \equiv 2 \mod 4$.

Latin square of order *n*; cover by partial transversals. Let k = n/2. Let *A* and *B* be Latin squares of order *k*, using 1,..., *k* in *A* and k + 1,..., 2k in *B*. Let $C = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$. **No transversal!** *k* odd \Rightarrow must use $\ge \lceil k/2 \rceil$ positions in some quadrant; others give $\le \lfloor k/2 \rfloor$, so $\hat{\alpha}'(G) \le n-1$.

Ex. *t*-tolerant edge-colored G with $\hat{\chi}'(G) \ge \frac{t}{2}(n-1)$.

For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of K_{tp} . Form G by identifying color classes in t-tuples. Now $\hat{\alpha}'(G) \leq p$ (there are only p colors).

So, $\hat{\chi}'(G) \ge \frac{1}{p} |E(G)| \ge \frac{t}{2} (tp-1) = \frac{t}{2} (n-1) = \frac{t}{2} \Delta(G).$

Ex. $\hat{\chi}'(G) > \Delta(G) + 1$ can occur even for a properly *n*-edge-colored copy of $K_{n,n}$, where $n \equiv 2 \mod 4$.

Latin square of order *n*; cover by partial transversals. Let k = n/2. Let *A* and *B* be Latin squares of order *k*, using 1,..., *k* in *A* and k + 1,..., 2k in *B*. Let $C = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$. **No transversal!** *k* odd \Rightarrow must use $\geq \lceil k/2 \rceil$ positions in some quadrant; others give $\leq \lfloor k/2 \rfloor$, so $\hat{\alpha}'(G) \leq n-1$. Thus $\hat{\chi}'(G) \geq \frac{n^2}{n-1} > n+1 = \Delta(G) + 1$.

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with c > 0, every t-tolerant edge-colored G with average color degree $\geq c$ has a t-tolerant edge-colored subgraph H with $\hat{\delta}(H) > \frac{c}{t+1}$.

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with c > 0, every t-tolerant edge-colored G with average color degree $\geq c$ has a t-tolerant edge-colored subgraph H with $\hat{\delta}(H) > \frac{c}{t+1}$.

Pf. If $\hat{d}_G(v) \leq \frac{c}{t+1}$, then deleting v decreases the color degree of up to $t\hat{d}_G(v)$ neighbors by at most 1.

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with c > 0, every *t*-tolerant edge-colored *G* with average color degree $\geq c$ has a *t*-tolerant edge-colored subgraph *H* with $\hat{\delta}(H) > \frac{c}{t+1}$.

Pf. If $\hat{d}_G(v) \leq \frac{c}{t+1}$, then deleting v decreases the color degree of up to $t\hat{d}_G(v)$ neighbors by at most 1. Since $\sum_{V(G-v)} \hat{d}_{G-v}(u) \geq \sum_{V(G)} \hat{d}_G(u) - (t+1)\hat{d}_G(v) \geq cn - c$,

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with c > 0, every *t*-tolerant edge-colored *G* with average color degree $\geq c$ has a *t*-tolerant edge-colored subgraph *H* with $\hat{\delta}(H) > \frac{c}{t+1}$.

Pf. If $\hat{d}_G(v) \leq \frac{c}{t+1}$, then deleting v decreases the color degree of up to $t\hat{d}_G(v)$ neighbors by at most 1. Since $\sum_{V(G-v)} \hat{d}_{G-v}(u) \geq \sum_{V(G)} \hat{d}_G(u) - (t+1)\hat{d}_G(v) \geq cn - c$, deleting v does not reduce the average color degree, and G - v is *t*-tolerant. Iterate to reach *H*.

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with c > 0, every *t*-tolerant edge-colored *G* with average color degree $\geq c$ has a *t*-tolerant edge-colored subgraph *H* with $\hat{\delta}(H) > \frac{c}{t+1}$.

Pf. If $\hat{d}_G(v) \leq \frac{c}{t+1}$, then deleting v decreases the color degree of up to $t\hat{d}_G(v)$ neighbors by at most 1. Since $\sum_{V(G-v)} \hat{d}_{G-v}(u) \geq \sum_{V(G)} \hat{d}_G(u) - (t+1)\hat{d}_G(v) \geq cn-c$, deleting v does not reduce the average color degree,

and G - v is t-tolerant. Iterate to reach H.

Cor. $\hat{\alpha}'(G) \ge \left\lceil \frac{m}{nt(t+1)} \right\rceil$, where *G* has *m* edges.

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with c > 0, every *t*-tolerant edge-colored *G* with average color degree $\geq c$ has a *t*-tolerant edge-colored subgraph *H* with $\hat{\delta}(H) > \frac{c}{t+1}$.

Pf. If $\hat{d}_G(v) \leq \frac{c}{t+1}$, then deleting v decreases the color degree of up to $t\hat{d}_G(v)$ neighbors by at most 1. Since $\sum_{V(G-v)} \hat{d}_{G-v}(u) \geq \sum_{V(G)} \hat{d}_G(u) - (t+1)\hat{d}_G(v) \geq cn - c$, deleting v does not reduce the average color degree, and G - v is t-tolerant. Iterate to reach H.

Cor. $\hat{\alpha}'(G) \ge \left\lceil \frac{m}{nt(t+1)} \right\rceil$, where *G* has *m* edges. **Pf.** *t*-tolerant $\Rightarrow \hat{d}_G(v) \ge d_G(v)/t$. With degree-sum 2*m*, the average color degree is $\ge 2m/(nt)$. The lemma yields *H* with $\hat{\delta}(H) > \frac{2m}{nt(t+1)}$. Now $\hat{\alpha}'(H) \ge \left\lceil \frac{m}{nt(t+1)} \right\rceil$. Upper Bound for $\hat{\chi}'(G)$ – Theorem

Thm. If G is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\chi}'(G) < t(t+1)n \ln n$.

Thm. If G is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\chi}'(G) < t(t+1)n \ln n$.

Pf. We may assume G is an edge-coloring of K_n .

Thm. If G is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\chi}'(G) < t(t+1)n \ln n$.

Pf. We may assume G is an edge-coloring of K_n .

Let $F_0 = G$ and $a_0 = 1$. For i > 0, obtain F_i from F_{i-1} by deleting a large rainbow matching M_{i-1} ; let $a_i = \frac{|E(F_i)|}{\binom{n}{2}}$.

By the corollary, $|M_{i-1}| \ge \frac{|E(F_{i-1})|}{nt(t+1)} = a_{i-1} \frac{n-1}{2t(t+1)}$.

Thm. If G is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\chi}'(G) < t(t+1)n \ln n$.

Pf. We may assume G is an edge-coloring of K_n .

Let $F_0 = G$ and $a_0 = 1$. For i > 0, obtain F_i from F_{i-1} by deleting a large rainbow matching M_{i-1} ; let $a_i = \frac{|E(F_i)|}{\binom{n}{2}}$.

By the corollary, $|M_{i-1}| \ge \frac{|E(F_{i-1})|}{nt(t+1)} = a_{i-1} \frac{n-1}{2t(t+1)}$.

Let *j* be the least index such that $a_j \frac{n-1}{2t(t+1)} \le 1$. F_j is covered by $|E(F_j)|$ single-edge rainbow matchings.

Thm. If G is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\chi}'(G) < t(t+1)n \ln n$.

Pf. We may assume G is an edge-coloring of K_n .

Let $F_0 = G$ and $a_0 = 1$. For i > 0, obtain F_i from F_{i-1} by deleting a large rainbow matching M_{i-1} ; let $a_i = \frac{|E(F_i)|}{\binom{n}{2}}$.

By the corollary, $|M_{i-1}| \ge \frac{|E(F_{i-1})|}{nt(t+1)} = a_{i-1} \frac{n-1}{2t(t+1)}$.

Let *j* be the least index such that $a_j \frac{n-1}{2t(t+1)} \le 1$. F_j is covered by $|E(F_j)|$ single-edge rainbow matchings. Thus $\hat{\chi}'(G) \le j + |E(F_j)|$.

Thm. If G is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\chi}'(G) < t(t+1)n \ln n$.

Pf. We may assume G is an edge-coloring of K_n .

Let $F_0 = G$ and $a_0 = 1$. For i > 0, obtain F_i from F_{i-1} by deleting a large rainbow matching M_{i-1} ; let $a_i = \frac{|E(F_i)|}{\binom{n}{2}}$.

By the corollary, $|M_{i-1}| \ge \frac{|E(F_{i-1})|}{nt(t+1)} = a_{i-1} \frac{n-1}{2t(t+1)}$.

Let *j* be the least index such that $a_j \frac{n-1}{2t(t+1)} \le 1$. F_j is covered by $|E(F_j)|$ single-edge rainbow matchings. Thus $\hat{\chi}'(G) \le j + |E(F_j)|$.

It remains to bound j and $|E(F_j)|$.

Upper Bound for $\hat{\chi}'(G)$ – Completion Note $a_i\binom{n}{2} = |E(F_{i-1})| - |M_{i-1}| \le a_{i-1}\binom{n}{2} \left(1 - \frac{1}{nt(t+1)}\right)$. Upper Bound for $\hat{\chi}'(G)$ – Completion Note $a_i\binom{n}{2} = |E(F_{i-1})| - |M_{i-1}| \le a_{i-1}\binom{n}{2} \left(1 - \frac{1}{nt(t+1)}\right)$. Now $a_0 = 1$ yields $a_i \le \left(1 - \frac{1}{nt(t+1)}\right)^i < e^{\frac{-i}{nt(t+1)}}$. Upper Bound for $\hat{\chi}'(G)$ – Completion Note $a_i \binom{n}{2} = |E(F_{i-1})| - |M_{i-1}| \le a_{i-1}\binom{n}{2} \left(1 - \frac{1}{nt(t+1)}\right)$. Now $a_0 = 1$ yields $a_i \le \left(1 - \frac{1}{nt(t+1)}\right)^i < e^{\frac{-i}{nt(t+1)}}$. We have $a_j \le \frac{2t(t+1)}{n-1} = \frac{2t(t+1)}{n-1} < a_{j-1} < e^{\frac{-j+1}{nt(t+1)}}$. Upper Bound for $\hat{\chi}'(G)$ – Completion Note $a_i \binom{n}{2} = |E(F_{i-1})| - |M_{i-1}| \le a_{i-1} \binom{n}{2} \left(1 - \frac{1}{nt(t+1)}\right)$. Now $a_0 = 1$ yields $a_i \le \left(1 - \frac{1}{nt(t+1)}\right)^i < e^{\frac{-i}{nt(t+1)}}$. We have $a_j \le \frac{2t(t+1)}{n-1} = \frac{2t(t+1)}{n-1} < a_{j-1} < e^{\frac{-j+1}{nt(t+1)}}$.

Finally, we compute

$$j + a_j \binom{n}{2} < nt(t+1) \ln \frac{n-1}{2t(t+1)} + 1 + \frac{2t(t+1)}{n-1} \frac{n(n-1)}{2} < t(t+1)n \ln(n-1).$$

Upper Bound for $\hat{\chi}'(G)$ – Completion Note $a_i \binom{n}{2} = |E(F_{i-1})| - |M_{i-1}| \le a_{i-1}\binom{n}{2} \left(1 - \frac{1}{nt(t+1)}\right)$. Now $a_0 = 1$ yields $a_i \le \left(1 - \frac{1}{nt(t+1)}\right)^i < e^{\frac{-i}{nt(t+1)}}$. We have $a_j \le \frac{2t(t+1)}{n-1} = \frac{2t(t+1)}{n-1} < a_{j-1} < e^{\frac{-j+1}{nt(t+1)}}$. Finally, we compute

$$j + a_j \binom{n}{2} < nt(t+1) \ln \frac{n-1}{2t(t+1)} + 1 + \frac{2t(t+1)}{n-1} \frac{n(n-1)}{2} \\ < t(t+1)n \ln(n-1).$$

Thus $\hat{\chi}'(G) < t(t+1)n \ln n$.

Upper Bound for $\hat{\chi}'(G)$ – Completion Note $a_i \binom{n}{2} = |E(F_{i-1})| - |M_{i-1}| \le a_{i-1}\binom{n}{2} \left(1 - \frac{1}{nt(t+1)}\right)$. Now $a_0 = 1$ yields $a_i \le \left(1 - \frac{1}{nt(t+1)}\right)^i < e^{\frac{-i}{nt(t+1)}}$. We have $a_j \le \frac{2t(t+1)}{n-1} = \frac{2t(t+1)}{n-1} < a_{j-1} < e^{\frac{-j+1}{nt(t+1)}}$. Finally, we compute

$$j + a_j \binom{n}{2} < nt(t+1) \ln \frac{n-1}{2t(t+1)} + 1 + \frac{2t(t+1)}{n-1} \frac{n(n-1)}{2} \\ < t(t+1)n \ln(n-1).$$

Thus $\hat{\chi}'(G) < t(t+1)n \ln n$.

Note: Below: a *t*-tolerant edge-colored graph *G* with avg color degree (t + 1)/2, but $\hat{\delta}(H) \leq 1$ for all $H \subseteq G$.

Thm. If *G* is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k}n$, where $k = \frac{\delta(G)}{t} + 1$.

Thm. If *G* is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k}n$, where $k = \frac{\delta(G)}{t} + 1$.

Pf. For $v \in V(G)$, form S_v at v by including a random incident edge of each color. Note $\mathbb{P}(vw \in E(S_v)) \ge 1/t$.

Thm. If *G* is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k}n$, where $k = \frac{\delta(G)}{t} + 1$.

Pf. For $v \in V(G)$, form S_v at v by including a random incident edge of each color. Note $\mathbb{P}(vw \in E(S_v)) \ge 1/t$.

Set $p = \frac{\ln k}{k}$. Form *A* by including each vertex with probability *p*, so $\mathbb{E}(|A|) = pn$. Let $B = V(G) - \bigcup_{v \in A} V(S_v)$.

Thm. If *G* is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k}n$, where $k = \frac{\delta(G)}{t} + 1$.

Pf. For $v \in V(G)$, form S_v at v by including a random incident edge of each color. Note $\mathbb{P}(vw \in E(S_v)) \ge 1/t$.

Set $p = \frac{\ln k}{k}$. Form *A* by including each vertex with probability *p*, so $\mathbb{E}(|A|) = pn$. Let $B = V(G) - \bigcup_{v \in A} V(S_v)$.

Note that $\hat{\gamma}(G) \leq |A| + |B|$.

Thm. If *G* is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k}n$, where $k = \frac{\delta(G)}{t} + 1$.

Pf. For $v \in V(G)$, form S_v at v by including a random incident edge of each color. Note $\mathbb{P}(vw \in E(S_v)) \ge 1/t$.

Set $p = \frac{\ln k}{k}$. Form *A* by including each vertex with probability *p*, so $\mathbb{E}(|A|) = pn$. Let $B = V(G) - \bigcup_{v \in A} V(S_v)$.

Note that $\hat{\gamma}(G) \leq |A| + |B|$.

Note $w \in B$ if $w \notin A$ and $[v \notin A \text{ or } w \notin S_v \text{ for } v \in N(w)]$. Thus $\mathbb{P}(w \in B) \leq (1 - p)[(1 - p) + p(1 - 1/t)]^{\delta(G)}$.

Thm. If *G* is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k}n$, where $k = \frac{\delta(G)}{t} + 1$.

Pf. For $v \in V(G)$, form S_v at v by including a random incident edge of each color. Note $\mathbb{P}(vw \in E(S_v)) \ge 1/t$.

Set $p = \frac{\ln k}{k}$. Form *A* by including each vertex with probability *p*, so $\mathbb{E}(|A|) = pn$. Let $B = V(G) - \bigcup_{v \in A} V(S_v)$.

Note that $\hat{\gamma}(G) \leq |A| + |B|$.

Note $w \in B$ if $w \notin A$ and $[v \notin A \text{ or } w \notin S_v \text{ for } v \in N(w)]$. Thus $\mathbb{P}(w \in B) \leq (1-p)[(1-p)+p(1-1/t)]^{\delta(G)}$.

Now $\mathbb{P}(w \in B) \le (1-p)(1-\frac{p}{t})^{\delta(G)} \le e^{-p}e^{-\delta(G)p/t} = e^{-pk} = \frac{1}{k}.$

Thm. If *G* is an *n*-vertex *t*-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k}n$, where $k = \frac{\delta(G)}{t} + 1$.

Pf. For $v \in V(G)$, form S_v at v by including a random incident edge of each color. Note $\mathbb{P}(vw \in E(S_v)) \ge 1/t$.

Set $p = \frac{\ln k}{k}$. Form *A* by including each vertex with probability *p*, so $\mathbb{E}(|A|) = pn$. Let $B = V(G) - \bigcup_{v \in A} V(S_v)$.

Note that $\hat{\gamma}(G) \leq |A| + |B|$.

Note $w \in B$ if $w \notin A$ and $[v \notin A \text{ or } w \notin S_v \text{ for } v \in N(w)]$. Thus $\mathbb{P}(w \in B) \leq (1-p)[(1-p)+p(1-1/t)]^{\delta(G)}$.

Now $\mathbb{P}(w \in B) \le (1-p)(1-\frac{p}{t})^{\delta(G)} \le e^{-p}e^{-\delta(G)p/t} = e^{-pk} = \frac{1}{k}.$

Thus $\mathbb{E}(|B|) \le n/k$. We conclude $\mathbb{E}(|A \cup B|) \le \frac{(1+\ln k)}{k}n$.

Prop. $\hat{\gamma}(G) \leq n - \hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.

Prop. $\hat{\gamma}(G) \leq n - \hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.

Pf. A largest rainbow star covers $\hat{\Delta}(G) + 1$ vertices.

Prop. $\hat{\gamma}(G) \leq n - \hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.

Pf. A largest rainbow star covers $\hat{\Delta}(G) + 1$ vertices. Sharpness: Construction with $\hat{\Delta}(G) = k$.

Prop. $\hat{\gamma}(G) \leq n - \hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.

Pf. A largest rainbow star covers $\hat{\Delta}(G) + 1$ vertices. Sharpness: Construction with $\hat{\Delta}(G) = k$.

Prop. $\hat{\gamma}(G) \leq n - \hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.

Pf. A largest rainbow star covers $\hat{\Delta}(G) + 1$ vertices. Sharpness: Construction with $\hat{\Delta}(G) = k$.

Let U = independent set of size n - k. Let $W = \{w_1, \dots, w_k\}$, centers of monochromatic stars.

Prop. $\hat{\gamma}(G) \leq n - \hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.

Pf. A largest rainbow star covers $\hat{\Delta}(G) + 1$ vertices. Sharpness: Construction with $\hat{\Delta}(G) = k$.

Let U = independent set of size n - k. Let $W = \{w_1, \dots, w_k\}$, centers of monochromatic stars. Make W a clique using edges with distinct new colors.

Prop. $\hat{\gamma}(G) \leq n - \hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.

Pf. A largest rainbow star covers $\hat{\Delta}(G) + 1$ vertices. Sharpness: Construction with $\hat{\Delta}(G) = k$.

Let U = independent set of size n - k. Let W = { $w_1, ..., w_k$ }, centers of monochromatic stars. Make W a clique using edges with distinct new colors. Now $\hat{d}(v) = k$ for all v, but $\hat{\gamma}(G) = n - k$. (No rainbow star covers two vertices of U.)

Prop. $\hat{\gamma}(G) \leq n - \hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.

Pf. A largest rainbow star covers $\hat{\Delta}(G) + 1$ vertices. Sharpness: Construction with $\hat{\Delta}(G) = k$.

Let U = independent set of size n - k. Let $W = \{w_1, \dots, w_k\}$, centers of monochromatic stars. Make W a clique using edges with distinct new colors. Now $\hat{d}(v) = k$ for all v, but $\hat{\gamma}(G) = n - k$.

Note: $\hat{\gamma}(G)/n \to 1$, but $t/n \to 1$.

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1}n$ when G is *t*-tolerant and $\delta(G) \geq 1$.

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1}n$ when G is *t*-tolerant and $\delta(G) \geq 1$.

Lem. If *G* has no isolated vertices, then V(G) can be covered by a family \mathcal{F} of disjoint nontrivial stars in *G*.

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1}n$ when G is *t*-tolerant and $\delta(G) \geq 1$.

Lem. If *G* has no isolated vertices, then V(G) can be covered by a family \mathcal{F} of disjoint nontrivial stars in *G*. **Pf.** A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1}n$ when G is *t*-tolerant and $\delta(G) \geq 1$.

Lem. If *G* has no isolated vertices, then V(G) can be covered by a family \mathcal{F} of disjoint nontrivial stars in *G*. **Pf.** A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Pf. (of **Thm**) From the family \mathcal{F} , consider $F \in \mathcal{F}$ with center v_F . A largest rainbow star in F has $\hat{d}_F(v_F)$ edges.

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1}n$ when G is *t*-tolerant and $\delta(G) \geq 1$.

Lem. If *G* has no isolated vertices, then V(G) can be covered by a family \mathcal{F} of disjoint nontrivial stars in *G*. **Pf.** A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Pf. (of **Thm**) From the family \mathcal{F} , consider $F \in \mathcal{F}$ with center v_F . A largest rainbow star in F has $\hat{d}_F(v_F)$ edges. Let \mathcal{F}' consist of a largest rainbow star inside each member of \mathcal{F} . Let $s = \sum_{F \in \mathcal{F}} \hat{d}_F(v_F)$ and $k = |\mathcal{F}'|$.

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1}n$ when G is **t**-tolerant and $\delta(G) \geq 1$.

Lem. If *G* has no isolated vertices, then V(G) can be covered by a family \mathcal{F} of disjoint nontrivial stars in *G*. **Pf.** A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Pf. (of **Thm**) From the family \mathcal{F} , consider $F \in \mathcal{F}$ with center v_F . A largest rainbow star in F has $\hat{d}_F(v_F)$ edges. Let \mathcal{F}' consist of a largest rainbow star inside each member of \mathcal{F} . Let $s = \sum_{F \in \mathcal{F}} \hat{d}_F(v_F)$ and $k = |\mathcal{F}'|$. \mathcal{F}' covers k + s vertices with k rainbow stars. Add 1-vertex stars; now $\hat{\gamma}(G) \leq n - s$. Note that $s \geq k$.

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1}n$ when G is **t**-tolerant and $\delta(G) \geq 1$.

Lem. If *G* has no isolated vertices, then V(G) can be covered by a family \mathcal{F} of disjoint nontrivial stars in *G*. **Pf.** A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Pf. (of **Thm**) From the family \mathcal{F} , consider $F \in \mathcal{F}$ with center v_F . A largest rainbow star in F has $\hat{d}_F(v_F)$ edges. Let \mathcal{F}' consist of a largest rainbow star inside each member of \mathcal{F} . Let $s = \sum_{F \in \mathcal{F}} \hat{d}_F(v_F)$ and $k = |\mathcal{F}'|$. \mathcal{F}' covers k + s vertices with k rainbow stars. Add 1-vertex stars; now $\hat{\gamma}(G) \leq n - s$. Note that $s \geq k$. If $F \in \mathcal{F}$, then $|V(F)| \leq t \cdot \hat{d}_F(v_F) + 1$. Summing over \mathcal{F} yields $n \leq ts + k \leq (t + 1)s$.

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1}n$ when G is **t**-tolerant and $\delta(G) \geq 1$.

Lem. If *G* has no isolated vertices, then V(G) can be covered by a family \mathcal{F} of disjoint nontrivial stars in *G*. **Pf.** A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Pf. (of **Thm**) From the family \mathcal{F} , consider $F \in \mathcal{F}$ with center v_F . A largest rainbow star in F has $\hat{d}_F(v_F)$ edges. Let \mathcal{F}' consist of a largest rainbow star inside each member of \mathcal{F} . Let $\mathbf{s} = \sum_{F \in \mathcal{F}} \hat{d}_F(v_F)$ and $\mathbf{k} = |\mathcal{F}'|$. \mathcal{F}' covers k + s vertices with k rainbow stars. Add 1-vertex stars; now $\hat{\gamma}(G) \leq n-s$. Note that $s \geq k$. If $F \in \mathcal{F}$, then $|V(F)| \leq t \cdot \hat{d}_F(v_F) + 1$. Summing over \mathcal{F} yields $n \leq ts + k \leq (t+1)s$. Thus $\hat{\gamma}(G) \leq n - s \leq \frac{t}{t+1}n$, since $s \geq \frac{1}{t+1}n$.

Characterization of Equality

Def. The *t*-corona $H \circ t$ is formed by adding *t* pendant edges at each vertex of *H*. A *t*-flare is an edge-colored *t*-corona $H \circ t$ that is *t*-tolerant and, for each vertex of *H*, has the same color on all *t* new pendant edges there.

Characterization of Equality

Def. The *t*-corona $H \circ t$ is formed by adding *t* pendant edges at each vertex of *H*. A *t*-flare is an edge-colored *t*-corona $H \circ t$ that is *t*-tolerant and, for each vertex of *H*, has the same color on all *t* new pendant edges there.

No rainbow star covers two leaves, so $\hat{\gamma}(G) = \frac{t}{t+1}n$.

Characterization of Equality

Def. The *t*-corona $H \circ t$ is formed by adding *t* pendant edges at each vertex of *H*. A *t*-flare is an edge-colored *t*-corona $H \circ t$ that is *t*-tolerant and, for each vertex of *H*, has the same color on all *t* new pendant edges there.

No rainbow star covers two leaves, so $\hat{\gamma}(G) = \frac{t}{t+1}n$.

Thm. Equality \Rightarrow every component is a *t*-flare (or monochr. C_3 (t = 2) or properly edge-colored C_4 (t = 1)).

Characterization of Equality

Def. The *t*-corona $H \circ t$ is formed by adding *t* pendant edges at each vertex of *H*. A *t*-flare is an edge-colored *t*-corona $H \circ t$ that is *t*-tolerant and, for each vertex of *H*, has the same color on all *t* new pendant edges there.

No rainbow star covers two leaves, so $\hat{\gamma}(G) = \frac{t}{t+1}n$.

Thm. Equality \Rightarrow every component is a *t*-flare (or monochr. C_3 (t = 2) or properly edge-colored C_4 (t = 1)).

• For t = 1 (where $\hat{\gamma}(G) = \gamma(G)$), Payan–Xuong [1982] and Fink–Jacobson–Kinch–Roberts [1985] char'zd $\gamma(G) = n/2$.

Reduce to connected G; let T be any spanning tree.

Reduce to connected G; let T be any spanning tree. Let v be a nonleaf vertex in T. Can v have no leaf nbr?

Reduce to connected G; let T be any spanning tree.

Let v be a nonleaf vertex in T. Can v have no leaf nbr?

Reduce to connected G; let T be any spanning tree.

Let v be a nonleaf vertex in T. Can v have no leaf nbr?

If $(t+1) \nmid |V(C_i)|$, then strict inequality for C_i (and G).

Reduce to connected G; let T be any spanning tree.

Let v be a nonleaf vertex in T. Can v have no leaf nbr?

If $(t+1) \nmid |V(C_i)|$, then strict inequality for C_i (and G). Now $(t+1) \nmid n$, and again the inequality is strict for G.

 \therefore v has leaf nbr(s), say l of them, with k colors.

 \therefore v has leaf nbr(s), say ℓ of them, with k colors.

Now T has a rainbow star **F** at v with k leaves.

 \therefore v has leaf nbr(s), say ℓ of them, with k colors.

Now T has a rainbow star F at v with k leaves. $\hat{\gamma}(G) \le 1 + \ell - k + \sum \hat{\gamma}(C_i)$

 \therefore v has leaf nbr(s), say l of them, with k colors.

Now T has a rainbow star **F** at v with k leaves.

$$\begin{split} \hat{\gamma}(G) &\leq 1 + \ell - k + \sum \hat{\gamma}(C_i) \\ \frac{t}{t+1}n &\leq 1 + \ell - k + \frac{t}{t+1}(n-\ell-1) \end{split}$$

 \therefore v has leaf nbr(s), say l of them, with k colors.

Now *T* has a rainbow star *F* at *v* with *k* leaves. $\hat{\gamma}(G) \le 1 + \ell - k + \sum \hat{\gamma}(C_i)$ $\frac{t}{t+1}n \le 1 + \ell - k + \frac{t}{t+1}(n - \ell - 1)$ Simplifies to $\frac{\ell+1}{t+1} \ge k$. Also *t*-tolerant $\Rightarrow k \ge \frac{\ell}{t}$.

 \therefore v has leaf nbr(s), say l of them, with k colors.

Now T has a rainbow star F at v with k leaves. $\hat{\gamma}(G) \le 1 + \ell - k + \sum \hat{\gamma}(C_i)$ $\frac{t}{t+1}n \le 1 + \ell - k + \frac{t}{t+1}(n - \ell - 1)$ Simplifies to $\frac{\ell+1}{t+1} \ge k$. Also t-tolerant $\Rightarrow k \ge \frac{\ell}{t}$. From $\frac{\ell+1}{t+1} \ge k \ge \frac{\ell}{t}$, conclude $\ell = t$ and k = 1.

 \therefore v has leaf nbr(s), say l of them, with k colors.

Now T has a rainbow star F at v with k leaves.

 $\hat{\gamma}(G) \leq 1 + \ell - k + \sum \hat{\gamma}(C_i)$ $\frac{t}{t+1}n \leq 1 + \ell - k + \frac{t}{t+1}(n - \ell - 1)$ Simplifies to $\frac{\ell+1}{t+1} \geq k$. Also *t*-tolerant $\Rightarrow k \geq \frac{\ell}{t}$.
From $\frac{\ell+1}{t+1} \geq k \geq \frac{\ell}{t}$, conclude $\ell = t$ and k = 1. \therefore Every spanning tree is a *t*-flare.

 \therefore v has leaf nbr(s), say l of them, with k colors.

Now T has a rainbow star F at v with k leaves.

$$\begin{split} \hat{\gamma}(G) &\leq 1 + \ell - k + \sum \hat{\gamma}(C_i) \\ \frac{t}{t+1}n &\leq 1 + \ell - k + \frac{t}{t+1}(n-\ell-1) \\ \text{Simplifies to } \frac{\ell+1}{t+1} \geq k. \quad \text{Also } t\text{-tolerant} \implies k \geq \frac{\ell}{t}. \\ \text{From } \frac{\ell+1}{t+1} \geq k \geq \frac{\ell}{t}, \text{ conclude } \ell = t \text{ and } k = 1. \end{split}$$

 \therefore Every spanning tree is a *t*-flare.

Claim: No other edges at leaves of a spanning tree T. (Otherwise, some spanning tree is not a *t*-flare.)

 \therefore v has leaf nbr(s), say l of them, with k colors.

Now T has a rainbow star F at v with k leaves.

$$\begin{split} \hat{\gamma}(G) &\leq 1 + \ell - k + \sum \hat{\gamma}(C_i) \\ \frac{t}{t+1}n &\leq 1 + \ell - k + \frac{t}{t+1}(n-\ell-1) \\ \text{Simplifies to } \frac{\ell+1}{t+1} \geq k. \quad \text{Also } t\text{-tolerant} \implies k \geq \frac{\ell}{t}. \\ \text{From } \frac{\ell+1}{t+1} \geq k \geq \frac{\ell}{t}, \text{ conclude } \ell = t \text{ and } k = 1. \end{split}$$

 \therefore Every spanning tree is a *t*-flare.

Claim: No other edges at leaves of a spanning tree T. (Otherwise, some spanning tree is not a t-flare.)

(The exceptions: monochr. C_3 and properly colored C_4 .)

• Improve the bounds on the maximum value of the rainbow edge-chromatic number $\hat{\chi}'(G)$ among *t*-tolerant *n*-vertex graphs.

• Improve the bounds on the maximum value of the rainbow edge-chromatic number $\hat{\chi}'(G)$ among *t*-tolerant *n*-vertex graphs.

• Generalize other bounds on the domination number $\gamma(G)$ to the rainbow domination number $\hat{\gamma}(G)$.

• Improve the bounds on the maximum value of the rainbow edge-chromatic number $\hat{\chi}'(G)$ among *t*-tolerant *n*-vertex graphs.

• Generalize other bounds on the domination number $\gamma(G)$ to the rainbow domination number $\hat{\gamma}(G)$.

• Generalize other problems on ordinary graphs to the setting of edge-colored graphs. (Turán problems, Ramsey problems, etc.)

• Improve the bounds on the maximum value of the rainbow edge-chromatic number $\hat{\chi}'(G)$ among *t*-tolerant *n*-vertex graphs.

• Generalize other bounds on the domination number $\gamma(G)$ to the rainbow domination number $\hat{\gamma}(G)$.

• Generalize other problems on ordinary graphs to the setting of edge-colored graphs. (Turán problems, Ramsey problems, etc.)

Reference:

T. D. LeSaulnier and D. B. West, Rainbow edge-coloring and rainbow domination, *Discrete Math. (2012)*, DOI: 10.1016/j.disc.2012.03.014.