Rainbow Edge-coloring and Rainbow Domination

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page

Joint work with Timothy D. LeSaulnier

The Problem

edge-coloring: cover $E(G)$ with matchings $-\chi^{\prime}(G)$
domination: cover $V(G)$ with disjoint stars $-\gamma(G)$

The Problem

edge-coloring: cover $E(G)$ with matchings - $\chi^{\prime}(G)$
domination: cover $V(G)$ with disjoint stars - $\gamma(G)$
Def. rainbow subgraph: in an edge-colored graph, a subgraph whose edges have distinct colors

The Problem

edge-coloring: cover $E(G)$ with matchings - $\chi^{\prime}(G)$
domination: cover $V(G)$ with disjoint stars - $\gamma(G)$
Def. rainbow subgraph: in an edge-colored graph, a subgraph whose edges have distinct colors

Def. rainbow edge-coloring: use rainbow matchings $\hat{\chi}^{\prime}(G)=\min \{k: G$ has a rainbow k-edge-coloring $\}$

The Problem

edge-coloring: cover $E(G)$ with matchings - $\chi^{\prime}(G)$
domination: cover $V(G)$ with disjoint stars - $\gamma(G)$
Def. rainbow subgraph: in an edge-colored graph, a subgraph whose edges have distinct colors

Def. rainbow edge-coloring: use rainbow matchings $\hat{\chi}^{\prime}(G)=\min \{k: G$ has a rainbow k-edge-coloring $\}$

Def. rainbow domination: use disjoint rainbow stars $\hat{\gamma}(G)=\min \{k: V(G)$ covered by k disjoint rainb. stars $\}$

The Problem

edge-coloring: cover $E(G)$ with matchings - $\chi^{\prime}(G)$ domination: cover $V(G)$ with disjoint stars - $\gamma(G)$

Def. rainbow subgraph: in an edge-colored graph, a subgraph whose edges have distinct colors

Def. rainbow edge-coloring: use rainbow matchings $\hat{\chi}^{\prime}(G)=\min \{k: G$ has a rainbow k-edge-coloring $\}$

Def. rainbow domination: use disjoint rainbow stars $\hat{\gamma}(G)=\min \{k: V(G)$ covered by k disjoint rainb. stars $\}$

If the edge-coloring is rainbow, then $\hat{\chi}^{\prime}(G)=\chi^{\prime}(G)$.
If the edge-coloring is proper, then $\hat{\gamma}(G)=\gamma(G)$.

Large Rainbow Matchings

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row \& column).

Large Rainbow Matchings

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row \& column).

Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n, n}$ have rainbow perfect matchings.

Large Rainbow Matchings

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row \& column).
Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n, n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_{G}(v)=$ \#colors incident to v.

Large Rainbow Matchings

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row \& column).
Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n, n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_{G}(v)=$ \#colors incident to v. min color degree $\hat{\delta}(G) ; \quad$ max color degree $\hat{\Delta}(G)$.

Large Rainbow Matchings

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row \& column).
Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n, n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_{G}(v)=$ \#colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}^{\prime}(G)=\max \mid$ rainbow matching \mid.

Large Rainbow Matchings

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row \& column).
Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n, n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_{G}(v)=$ \#colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}^{\prime}(G)=\max \mid$ rainbow matching \mid.

- $\hat{\alpha}^{\prime}\left(K_{4}\right)=1$ when properly colored. Assume $\hat{\delta}(G) \geq 4$.

Large Rainbow Matchings

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row \& column).
Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n, n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_{G}(v)=$ \#colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}^{\prime}(G)=\max \mid$ rainbow matching \mid.

- $\hat{\alpha}^{\prime}\left(K_{4}\right)=1$ when properly colored. Assume $\hat{\delta}(G) \geq 4$.

Conj. (Wang-Li [2008]) $\hat{\alpha}^{\prime}(G) \geq\left\lceil\frac{1}{2} \hat{\delta}(G)\right\rceil$. They did $\frac{5}{12}$.

Large Rainbow Matchings

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row \& column).
Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n, n}$ have rainbow perfect matchings.
Def. color degree $\hat{d}_{G}(v)=$ \#colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}^{\prime}(G)=\max \mid$ rainbow matching \mid.

- $\hat{\alpha}^{\prime}\left(K_{4}\right)=1$ when properly colored. Assume $\hat{\delta}(G) \geq 4$.

Conj. (Wang-Li [2008]) $\hat{\alpha}^{\prime}(G) \geq\left\lceil\frac{1}{2} \hat{\delta}(G)\right\rceil$. They did $\frac{5}{12}$.
Thm. (LeSaulnier-Stocker-Wenger-West [2010]) $\geq\left\lfloor\frac{1}{2} \hat{\delta}(G)\right\rfloor$.

Large Rainbow Matchings

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row \& column).
Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n, n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_{G}(v)=$ \#colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}^{\prime}(G)=\max \mid$ rainbow matching \mid.

- $\hat{\alpha}^{\prime}\left(K_{4}\right)=1$ when properly colored. Assume $\hat{\delta}(G) \geq 4$.

Conj. (Wang-Li [2008]) $\hat{\alpha}^{\prime}(G) \geq\left\lceil\frac{1}{2} \delta(G)\right\rceil$. They did $\frac{5}{12}$.
Thm. (LeSaulnier-Stocker-Wenger-West [2010]) $\geq\left\lfloor\frac{1}{2} \delta \hat{\delta}(G)\right\rfloor$.
Thm. (Kostochka-Yancey [2012]) $\hat{\alpha}^{\prime}(G) \geq\left\lceil\frac{1}{2} \delta(G)\right\rceil$.

Large Rainbow Matchings

Conj. Ryser [1967] Latin squares of odd order have transversals (distinct entries, one per row \& column).
Conj. (Ryser [1967]) For odd n, proper n-edge-colorings of $K_{n, n}$ have rainbow perfect matchings.

Def. color degree $\hat{d}_{G}(v)=$ \#colors incident to v. min color degree $\hat{\delta}(G)$; max color degree $\hat{\Delta}(G)$. rainbow matching $\# \hat{\alpha}^{\prime}(G)=\max \mid$ rainbow matching \mid.

- $\hat{\alpha}^{\prime}\left(K_{4}\right)=1$ when properly colored. Assume $\hat{\delta}(G) \geq 4$.

Conj. (Wang-Li [2008]) $\hat{\alpha}^{\prime}(G) \geq\left\lceil\frac{1}{2} \hat{\delta}(G)\right\rceil$. They did $\frac{5}{12}$.
Thm. (LeSaulnier-Stocker-Wenger-West [2010]) $\geq\left\lfloor\frac{1}{2} \hat{\delta}(G)\right\rfloor$.
Thm. (Kostochka-Yancey [2012]) $\hat{\alpha}^{\prime}(G) \geq\left\lceil\frac{1}{2} \delta(G)\right\rceil$.
With Pfender: $\hat{\alpha}^{\prime}(G) \geq \hat{\delta}(G)$ when $n \geq 5.5(\hat{\delta}(G))^{2}$.

Results

Def. An edge-colored graph is t-tolerant if its monochromatic stars all have at most t edges.

Results

Def. An edge-colored graph is t-tolerant if its monochromatic stars all have at most t edges.

Thm. If G is t-tolerant, then $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.
Also, examples exist with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.

Results

Def. An edge-colored graph is t-tolerant if its monochromatic stars all have at most t edges.

Thm. If G is t-tolerant, then $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.
Also, examples exist with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.
Thm. for rainbow domination (where $k=\frac{\delta(G)}{t}+1$):
classical

$$
\begin{array}{lll}
\gamma(G) \leq n-\Delta(G) & \text { Berge [1962] } & \hat{\gamma}(G) \leq n-\hat{\Delta}(G) \\
\gamma(G) \leq \frac{1}{2} n & \text { Ore [1962] (no isol.) } & \hat{\gamma}(G) \leq \frac{t}{t+1} n \\
\gamma(G) \leq \frac{1+\ln (\delta(G)+1)}{\delta(G)+1} n & \begin{array}{c}
\text { Arnautov [1974] } \\
\text { Payan }[1975]
\end{array} & \hat{\gamma}(G) \leq \frac{1+\ln k}{k} n
\end{array}
$$

Results

Def. An edge-colored graph is t-tolerant if its monochromatic stars all have at most t edges.

Thm. If G is t-tolerant, then $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.
Also, examples exist with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.
Thm. for rainbow domination (where $k=\frac{\delta(G)}{t}+1$):
classical

$$
\begin{array}{lll}
\gamma(G) \leq n-\Delta(G) & \text { Berge [1962] } & \hat{\gamma}(G) \leq n-\hat{\Delta}(G) \\
\gamma(G) \leq \frac{1}{2} n & \text { Ore [1962] (no isol.) } & \hat{\gamma}(G) \leq \frac{t}{t+1} n \\
\gamma(G) \leq \frac{1+\ln (\delta(G)+1)}{\delta(G)+1} n & \begin{array}{c}
\text { Arnautov [1974] } \\
\text { Payan }[1975]
\end{array} & \hat{\gamma}(G) \leq \frac{1+\ln k}{k} n
\end{array}
$$

Thm. When G is t-tolerant (and no isolated vertices), $\hat{\gamma}(G)=\frac{t}{t+1} n \Leftrightarrow$ each component is a t-flare (or monochr. $C_{3}(t=2)$ or properly edge-colored $C_{4}(t=1)$).

Constructions with $\hat{\chi}^{\prime}(G)$ large

Ex. t-tolerant edge-colored G with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.

Constructions with $\hat{\chi}^{\prime}(G)$ large

Ex. t-tolerant edge-colored G with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.
For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of $K_{t p}$.
Form G by identifying color classes in t-tuples.

Constructions with $\hat{\chi}^{\prime}(G)$ large

Ex. t-tolerant edge-colored G with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.
For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of $K_{t p}$.
Form G by identifying color classes in t-tuples.
Now $\hat{\alpha}^{\prime}(G) \leq p$ (there are only p colors).

Constructions with $\hat{\chi}^{\prime}(G)$ large

Ex. t-tolerant edge-colored G with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.
For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of $K_{t p}$.
Form G by identifying color classes in t-tuples.
Now $\hat{\alpha}^{\prime}(G) \leq p$ (there are only p colors).
So, $\quad \hat{\chi}^{\prime}(G) \geq \frac{1}{p}|E(G)| \geq \frac{t}{2}(t p-1)=\frac{t}{2}(n-1)=\frac{t}{2} \Delta(G)$.

Constructions with $\hat{\chi}^{\prime}(G)$ large

Ex. t-tolerant edge-colored G with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.
For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of $K_{t p}$.
Form G by identifying color classes in t-tuples.
Now $\hat{\alpha}^{\prime}(G) \leq p$ (there are only p colors).
So, $\quad \hat{\chi}^{\prime}(G) \geq \frac{1}{p}|E(G)| \geq \frac{t}{2}(t p-1)=\frac{t}{2}(n-1)=\frac{t}{2} \Delta(G)$.
Ex. $\hat{\chi}^{\prime}(G)>\Delta(G)+1$ can occur even for a properly n-edge-colored copy of $K_{n, n}$, where $n \equiv 2 \bmod 4$.

Constructions with $\hat{\chi}^{\prime}(G)$ large

Ex. t-tolerant edge-colored G with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.
For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of $K_{t p}$.
Form G by identifying color classes in t-tuples.
Now $\hat{\alpha}^{\prime}(G) \leq p$ (there are only p colors).
So, $\quad \hat{\chi}^{\prime}(G) \geq \frac{1}{p}|E(G)| \geq \frac{t}{2}(t p-1)=\frac{t}{2}(n-1)=\frac{t}{2} \Delta(G)$.
Ex. $\hat{\chi}^{\prime}(G)>\Delta(G)+1$ can occur even for a properly n-edge-colored copy of $K_{n, n}$, where $n \equiv 2 \bmod 4$.
Latin square of order n; cover by partial transversals.

Constructions with $\hat{\chi}^{\prime}(G)$ large

Ex. t-tolerant edge-colored G with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.
For $p \in \mathbb{N}$, start with a proper $t p$-edge-coloring of $K_{\text {tp }}$.
Form G by identifying color classes in t-tuples.
Now $\hat{\alpha}^{\prime}(G) \leq p$ (there are only p colors).
So, $\quad \hat{\chi}^{\prime}(G) \geq \frac{1}{p}|E(G)| \geq \frac{t}{2}(t p-1)=\frac{t}{2}(n-1)=\frac{t}{2} \Delta(G)$.
Ex. $\hat{\chi}^{\prime}(G)>\Delta(G)+1$ can occur even for a properly n-edge-colored copy of $K_{n, n}$, where $n \equiv 2 \bmod 4$.

Latin square of order n; cover by partial transversals. Let $k=n / 2$. Let A and B be Latin squares of order k, using $1, \ldots, k$ in A and $k+1, \ldots, 2 k$ in B. Let $C=\left(\begin{array}{l}A \\ B\end{array} A_{A}\right)$.

Constructions with $\hat{\chi}^{\prime}(G)$ large

Ex. t-tolerant edge-colored G with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.
For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of $K_{t p}$. Form G by identifying color classes in t-tuples.
Now $\hat{\alpha}^{\prime}(G) \leq p$ (there are only p colors).
So, $\quad \hat{\chi}^{\prime}(G) \geq \frac{1}{p}|E(G)| \geq \frac{t}{2}(t p-1)=\frac{t}{2}(n-1)=\frac{t}{2} \Delta(G)$.
Ex. $\hat{\chi}^{\prime}(G)>\Delta(G)+1$ can occur even for a properly n-edge-colored copy of $K_{n, n}$, where $n \equiv 2 \bmod 4$.

Latin square of order n; cover by partial transversals. Let $k=n / 2$. Let A and B be Latin squares of order k, using $1, \ldots, k$ in A and $k+1, \ldots, 2 k$ in B. Let $C=\left(\begin{array}{l}A \\ B\end{array} A_{A}^{B}\right)$. No transversal! k odd \Rightarrow must use $\geq\lceil k / 2\rceil$ positions in some quadrant; others give $\leq\lfloor k / 2\rfloor$, so $\hat{\alpha}^{\prime}(G) \leq n-1$.

Constructions with $\hat{\chi}^{\prime}(G)$ large

Ex. t-tolerant edge-colored G with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$.
For $p \in \mathbb{N}$, start with a proper tp-edge-coloring of $K_{t p}$. Form G by identifying color classes in t-tuples.
Now $\hat{\alpha}^{\prime}(G) \leq p$ (there are only p colors).
So, $\quad \hat{\chi}^{\prime}(G) \geq \frac{1}{p}|E(G)| \geq \frac{t}{2}(t p-1)=\frac{t}{2}(n-1)=\frac{t}{2} \Delta(G)$.
Ex. $\hat{\chi}^{\prime}(G)>\Delta(G)+1$ can occur even for a properly n-edge-colored copy of $K_{n, n}$, where $n \equiv 2 \bmod 4$.

Latin square of order n; cover by partial transversals. Let $k=n / 2$. Let A and B be Latin squares of order k, using $1, \ldots, k$ in A and $k+1, \ldots, 2 k$ in B. Let $C=\left(\begin{array}{l}A \\ B\end{array} A_{A}^{B}\right)$. No transversal! k odd \Rightarrow must use $\geq\lceil k / 2\rceil$ positions in some quadrant; others give $\leq\lfloor k / 2\rfloor$, so $\hat{\alpha}^{\prime}(G) \leq n-1$.
Thus

$$
\hat{\chi}^{\prime}(G) \geq \frac{n^{2}}{n-1}>n+1=\Delta(G)+1 .
$$

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Lemmas

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with $c>0$, every t-tolerant edge-colored G with average color degree $\geq c$ has a t-tolerant edge-colored subgraph H with $\hat{\delta}(H)>\frac{c}{t+1}$.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Lemmas

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with $c>0$, every t-tolerant edge-colored G with average color degree $\geq c$ has a t-tolerant edge-colored subgraph H with $\hat{\delta}(H)>\frac{c}{t+1}$.
Pf. If $\hat{d}_{G}(v) \leq \frac{c}{t+1}$, then deleting v decreases the color degree of up to $t \hat{d}_{G}(v)$ neighbors by at most 1 .

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Lemmas

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with $c>0$, every t-tolerant edge-colored G with average color degree $\geq c$ has a t-tolerant edge-colored subgraph H with $\hat{\delta}(H)>\frac{c}{t+1}$.
Pf. If $\hat{d}_{G}(v) \leq \frac{c}{t+1}$, then deleting v decreases the color degree of up to $t \hat{d}_{G}(v)$ neighbors by at most 1 . Since $\sum_{V(G-v)} \hat{d}_{G-v}(u) \geq \sum_{V(G)} \hat{d}_{G}(u)-(t+1) \hat{d}_{G}(v) \geq c n-c$,

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Lemmas

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with $c>0$, every t-tolerant edge-colored G with average color degree $\geq c$ has a t-tolerant edge-colored subgraph H with $\hat{\delta}(H)>\frac{c}{t+1}$.
Pf. If $\hat{d}_{G}(v) \leq \frac{c}{t+1}$, then deleting v decreases the color degree of up to $t \hat{d}_{G}(v)$ neighbors by at most 1 . Since $\sum_{V(G-v)} \hat{d}_{G-v}(u) \geq \sum_{V(G)} \hat{d}_{G}(u)-(t+1) \hat{d}_{G}(v) \geq c n-c$, deleting v does not reduce the average color degree, and $G-v$ is t-tolerant. Iterate to reach H.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Lemmas

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with $c>0$, every t-tolerant edge-colored G with average color degree $\geq c$ has a t-tolerant edge-colored subgraph H with $\hat{\delta}(H)>\frac{c}{t+1}$.
Pf. If $\hat{d}_{G}(v) \leq \frac{c}{t+1}$, then deleting v decreases the color degree of up to $t \hat{d}_{G}(v)$ neighbors by at most 1 . Since $\sum_{V(G-v)} \hat{d}_{G-v}(u) \geq \sum_{V(G)} \hat{d}_{G}(u)-(t+1) \hat{d}_{G}(v) \geq c n-c$, deleting v does not reduce the average color degree, and $G-v$ is t-tolerant. Iterate to reach H.

Cor. $\quad \hat{\alpha}^{\prime}(G) \geq\left\lceil\frac{m}{n t(t+1)}\right\rceil$, where G has m edges.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Lemmas

Lem. For $t \in \mathbb{N}$ and $c \in \mathbb{R}$ with $c>0$, every t-tolerant edge-colored G with average color degree $\geq c$ has a t-tolerant edge-colored subgraph H with $\hat{\delta}(H)>\frac{c}{t+1}$.
Pf. If $\hat{d}_{G}(v) \leq \frac{c}{t+1}$, then deleting v decreases the color degree of up to $t \hat{d}_{G}(v)$ neighbors by at most 1 . Since $\sum_{V(G-v)} \hat{d}_{G-v}(u) \geq \sum_{V(G)} \hat{d}_{G}(u)-(t+1) \hat{d}_{G}(v) \geq c n-c$, deleting v does not reduce the average color degree, and $G-v$ is t-tolerant. Iterate to reach H.

Cor. $\hat{\alpha}^{\prime}(G) \geq\left\lceil\frac{m}{n t(t+1)}\right\rceil$, where G has m edges.
Pf. t-tolerant $\Rightarrow \hat{d}_{G}(v) \geq d_{G}(v) / t$. With degree-sum $2 m$, the average color degree is $\geq 2 m /(n t)$. The lemma yields H with $\hat{\delta}(H)>\frac{2 m}{n t(t+1)}$. Now $\hat{\alpha}^{\prime}(H) \geq\left\lceil\frac{m}{n t(t+1)}\right\rceil$.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Theorem

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Theorem

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.

Pf. We may assume G is an edge-coloring of K_{n}.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Theorem

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.

Pf. We may assume G is an edge-coloring of K_{n}.
Let $F_{0}=G$ and $a_{0}=1$. For $i>0$, obtain F_{i} from F_{i-1} by deleting a large rainbow matching M_{i-1}; let $a_{i}=\frac{\left|E\left(F_{i}\right)\right|}{\binom{2}{2}}$. By the corollary, $\left|M_{i-1}\right| \geq \frac{\left|E\left(F_{i-1}\right)\right|}{n t(t+1)}=a_{i-1} \frac{n-1}{2 t(t+1)}$.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Theorem

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.

Pf. We may assume G is an edge-coloring of K_{n}.
Let $F_{0}=G$ and $a_{0}=1$. For $i>0$, obtain F_{i} from F_{i-1} by deleting a large rainbow matching M_{i-1}; let $a_{i}=\frac{\left(E\left(F_{i}\right) \mid\right.}{\binom{2}{2}}$. By the corollary, $\left|M_{i-1}\right| \geq \frac{\left|E\left(F_{i-1}\right)\right|}{n t(t+1)}=a_{i-1} \frac{n-1}{2 t(t+1)}$.

F_{j} is covered by $\left|E\left(F_{j}\right)\right|$ single-edge rainbow matchings.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Theorem

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.

Pf. We may assume G is an edge-coloring of K_{n}.
Let $F_{0}=G$ and $a_{0}=1$. For $i>0$, obtain F_{i} from F_{i-1} by deleting a large rainbow matching M_{i-1}; let $a_{i}=\frac{\left(E\left(F_{i}\right) \mid\right.}{\binom{2}{2}}$. By the corollary, $\left|M_{i-1}\right| \geq \frac{\left|E\left(F_{i-1}\right)\right|}{n t(t+1)}=a_{i-1} \frac{n-1}{2 t(t+1)}$.

F_{j} is covered by $\left|E\left(F_{j}\right)\right|$ single-edge rainbow matchings.
Thus $\hat{\chi}^{\prime}(G) \leq j+\left|E\left(F_{j}\right)\right|$.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Theorem

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.

Pf. We may assume G is an edge-coloring of K_{n}.
Let $F_{0}=G$ and $a_{0}=1$. For $i>0$, obtain F_{i} from F_{i-1} by deleting a large rainbow matching M_{i-1}; let $a_{i}=\frac{\left|E\left(F_{i}\right)\right|}{\binom{2}{2}}$. By the corollary, $\left|M_{i-1}\right| \geq \frac{\left|E\left(F_{i-1}\right)\right|}{n t(t+1)}=a_{i-1} \frac{n-1}{2 t(t+1)}$.

F_{j} is covered by $\left|E\left(F_{j}\right)\right|$ single-edge rainbow matchings.
Thus $\hat{\chi}^{\prime}(G) \leq j+\left|E\left(F_{j}\right)\right|$.
It remains to bound j and $\left|E\left(F_{j}\right)\right|$.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Completion

Note $a_{i}\binom{n}{2}=\left|E\left(F_{i-1}\right)\right|-\left|M_{i-1}\right| \leq a_{i-1}\binom{n}{2}\left(1-\frac{1}{n t(t+1)}\right)$.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Completion

Note $a_{i}\binom{n}{2}=\left|E\left(F_{i-1}\right)\right|-\left|M_{i-1}\right| \leq a_{i-1}\binom{n}{2}\left(1-\frac{1}{\operatorname{nt}(t+1)}\right)$.
Now $a_{0}=1$ yields $a_{i} \leq\left(1-\frac{1}{n t(t+1)}\right)^{i}<e^{\frac{-i}{n t(t+1)}}$.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Completion

Note $a_{i}\binom{n}{2}=\left|E\left(F_{i-1}\right)\right|-\left|M_{i-1}\right| \leq a_{i-1}\binom{n}{2}\left(1-\frac{1}{\operatorname{nt}(t+1)}\right)$.
Now $a_{0}=1$ yields $a_{i} \leq\left(1-\frac{1}{n t(t+1)}\right)^{i}<e^{\frac{-i}{n t(t+1)}}$.
We have $a_{j} \leq \frac{2 t(t+1)}{n-1}=\frac{2 t(t+1)}{n-1}<a_{j-1}<e^{\frac{-j+1}{5(t+1)}}$.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Completion

Note $a_{i}\binom{n}{2}=\left|E\left(F_{i-1}\right)\right|-\left|M_{i-1}\right| \leq a_{i-1}\binom{n}{2}\left(1-\frac{1}{\operatorname{nt}(t+1)}\right)$.
Now $a_{0}=1$ yields $a_{i} \leq\left(1-\frac{1}{n t(t+1)}\right)^{i}<e^{\frac{-i}{n t(t+1)}}$.
We have $a_{j} \leq \frac{2 t(t+1)}{n-1}=\frac{2 t(t+1)}{n-1}<a_{j-1}<e^{\frac{-j+1}{n t(t+1)}}$.
Finally, we compute

$$
\begin{aligned}
j+a_{j}\binom{n}{2} & <n t(t+1) \ln \frac{n-1}{2 t(t+1)}+1+\frac{2 t(t+1)}{n-1} \frac{n(n-1)}{2} \\
& <t(t+1) n \ln (n-1) .
\end{aligned}
$$

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Completion

Note $a_{i}\binom{n}{2}=\left|E\left(F_{i-1}\right)\right|-\left|M_{i-1}\right| \leq a_{i-1}\binom{n}{2}\left(1-\frac{1}{n t(t+1)}\right)$.
Now $a_{0}=1$ yields $a_{i} \leq\left(1-\frac{1}{n t(t+1)}\right)^{i}<e^{\frac{-i}{n t(t+1)}}$.
We have $a_{j} \leq \frac{2 t(t+1)}{n-1}=\frac{2 t(t+1)}{n-1}<a_{j-1}<e^{\frac{-j+1}{n t(t+1)}}$.
Finally, we compute

$$
\begin{aligned}
j+a_{j}\binom{n}{2} & <n t(t+1) \ln \frac{n-1}{2 t(t+1)}+1+\frac{2 t(t+1)}{n-1} \frac{n(n-1)}{2} \\
& <t(t+1) n \ln (n-1) .
\end{aligned}
$$

Thus $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.

Upper Bound for $\hat{\chi}^{\prime}(G)$ - Completion

Note $a_{i}\binom{n}{2}=\left|E\left(F_{i-1}\right)\right|-\left|M_{i-1}\right| \leq a_{i-1}\binom{n}{2}\left(1-\frac{1}{n t(t+1)}\right)$.
Now $a_{0}=1$ yields $a_{i} \leq\left(1-\frac{1}{n t(t+1)}\right)^{i}<e^{\frac{-i}{n t(t+1)}}$.
We have $a_{j} \leq \frac{2 t(t+1)}{n-1}=\frac{2 t(t+1)}{n-1}<a_{j-1}<e^{\frac{-j+1}{n t(t+1)}}$.
Finally, we compute

$$
\begin{aligned}
j+a_{j}\binom{n}{2} & <n t(t+1) \ln \frac{n-1}{2 t(t+1)}+1+\frac{2 t(t+1)}{n-1} \frac{n(n-1)}{2} \\
& <t(t+1) n \ln (n-1) .
\end{aligned}
$$

Thus $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$.
Note: Below: a t-tolerant edge-colored graph G with avg color degree $(t+1) / 2$, but $\hat{\delta}(H) \leq 1$ for all $H \subseteq G$.

Arnautov-Payan bound - Generalization

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k} n$, where $k=\frac{\delta(G)}{t}+1$.

Arnautov-Payan bound - Generalization

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k} n$, where $k=\frac{\delta(G)}{t}+1$.

Pf. For $v \in V(G)$, form S_{v} at v by including a random incident edge of each color. Note $\mathbb{P}\left(\nu w \in E\left(S_{V}\right)\right) \geq 1 / t$.

Arnautov-Payan bound - Generalization

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k} n$, where $k=\frac{\delta(G)}{t}+1$.

Pf. For $v \in V(G)$, form S_{v} at v by including a random incident edge of each color. Note $\mathbb{P}\left(\nu w \in E\left(S_{V}\right)\right) \geq 1 / t$.

Set $p=\frac{\ln k}{k}$. Form A by including each vertex with probability p, so $\mathbb{E}(|A|)=p n$. Let $B=V(G)-\bigcup_{v \in A} V\left(S_{V}\right)$.

Arnautov-Payan bound - Generalization

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k} n$, where $k=\frac{\delta(G)}{t}+1$.

Pf. For $v \in V(G)$, form S_{v} at v by including a random incident edge of each color. Note $\mathbb{P}\left(\nu w \in E\left(S_{V}\right)\right) \geq 1 / t$.

Set $p=\frac{\ln k}{k}$. Form A by including each vertex with probability p, so $\mathbb{E}(|A|)=p n$. Let $B=V(G)-\bigcup_{v \in A} V\left(S_{V}\right)$. Note that $\hat{\gamma}(G) \leq|A|+|B|$.

Arnautov-Payan bound - Generalization

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k} n$, where $k=\frac{\delta(G)}{t}+1$.

Pf. For $v \in V(G)$, form S_{v} at v by including a random incident edge of each color. Note $\mathbb{P}\left(\nu w \in E\left(S_{v}\right)\right) \geq 1 / t$.

Set $p=\frac{\ln k}{k}$. Form A by including each vertex with probability p, so $\mathbb{E}(|A|)=p n$. Let $B=V(G)-\bigcup_{v \in A} V\left(S_{v}\right)$. Note that $\hat{\gamma}(G) \leq|A|+|B|$.

Note $w \in B$ if $w \notin A$ and $\left[v \notin A\right.$ or $w \notin S_{v}$ for $\left.v \in N(w)\right]$. Thus $\mathbb{P}(w \in B) \leq(1-p)[(1-p)+p(1-1 / t)]^{\delta(G)}$.

Arnautov-Payan bound - Generalization

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k} n$, where $k=\frac{\delta(G)}{t}+1$.

Pf. For $v \in V(G)$, form S_{v} at v by including a random incident edge of each color. Note $\mathbb{P}\left(\nu w \in E\left(S_{v}\right)\right) \geq 1 / t$.

Set $p=\frac{\ln k}{k}$. Form A by including each vertex with probability p, so $\mathbb{E}(|A|)=p n$. Let $B=V(G)-\bigcup_{v \in A} V\left(S_{v}\right)$. Note that $\hat{\gamma}(G) \leq|A|+|B|$.

Note $w \in B$ if $w \notin A$ and $\left[v \notin A\right.$ or $w \notin S_{v}$ for $\left.v \in N(w)\right]$. Thus $\mathbb{P}(w \in B) \leq(1-p)[(1-p)+p(1-1 / t)]^{\delta(G)}$.

Now $\mathbb{P}(w \in B) \leq(1-p)\left(1-\frac{p}{t}\right)^{\delta(G)} \leq e^{-p} e^{-\delta(G) p / t}=e^{-p k}=\frac{1}{k}$.

Arnautov-Payan bound - Generalization

Thm. If G is an n-vertex t-tolerant edge-colored graph, then $\hat{\gamma}(G) \leq \frac{1+\ln k}{k} n$, where $k=\frac{\delta(G)}{t}+1$.

Pf. For $v \in V(G)$, form S_{v} at v by including a random incident edge of each color. Note $\mathbb{P}\left(\nu w \in E\left(S_{v}\right)\right) \geq 1 / t$.

Set $p=\frac{\ln k}{k}$. Form A by including each vertex with probability p, so $\mathbb{E}(|A|)=p n$. Let $B=V(G)-\bigcup_{v \in A} V\left(S_{v}\right)$. Note that $\hat{\gamma}(G) \leq|A|+|B|$.

Note $w \in B$ if $w \notin A$ and $\left[v \notin A\right.$ or $w \notin S_{v}$ for $\left.v \in N(w)\right]$. Thus $\mathbb{P}(w \in B) \leq(1-p)[(1-p)+p(1-1 / t)]^{\delta(G)}$.

Now $\mathbb{P}(w \in B) \leq(1-p)\left(1-\frac{p}{t}\right)^{\delta(G)} \leq e^{-p} e^{-\delta(G) p / t}=e^{-p k}=\frac{1}{k}$.
Thus $\mathbb{E}(|B|) \leq n / k$. We conclude $\mathbb{E}(|A \cup B|) \leq \frac{(1+\ln k)}{k} n$.

Berge's bound - Generalization

Prop. $\hat{\gamma}(G) \leq n-\hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.

Berge's bound - Generalization

Prop. $\hat{\gamma}(G) \leq n-\hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.
Pf. A largest rainbow star covers $\hat{\Delta}(G)+1$ vertices.

Berge's bound - Generalization

Prop. $\hat{\gamma}(G) \leq n-\hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.
Pf. A largest rainbow star covers $\hat{\Delta}(G)+1$ vertices.
Sharpness: Construction with $\hat{\Delta}(G)=k$.

Berge's bound - Generalization

Prop. $\hat{\gamma}(G) \leq n-\hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.
Pf. A largest rainbow star covers $\hat{\Delta}(G)+1$ vertices.
Sharpness: Construction with $\hat{\Delta}(G)=k$.

Let $U=$ independent set of size $n-k$.

Berge's bound - Generalization

Prop. $\hat{\gamma}(G) \leq n-\hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.
Pf. A largest rainbow star covers $\hat{\Delta}(G)+1$ vertices. Sharpness: Construction with $\hat{\Delta}(G)=k$.

Let $U=$ independent set of size $n-k$.
Let $W=\left\{w_{1}, \ldots, w_{k}\right\}$, centers of monochromatic stars.

Berge's bound - Generalization

Prop. $\hat{\gamma}(G) \leq n-\hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.
Pf. A largest rainbow star covers $\hat{\Delta}(G)+1$ vertices. Sharpness: Construction with $\hat{\Delta}(G)=k$.

Let $U=$ independent set of size $n-k$.
Let $W=\left\{w_{1}, \ldots, w_{k}\right\}$, centers of monochromatic stars. Make W a clique using edges with distinct new colors.

Berge's bound - Generalization

Prop. $\hat{\gamma}(G) \leq n-\hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.
Pf. A largest rainbow star covers $\hat{\Delta}(G)+1$ vertices. Sharpness: Construction with $\hat{\Delta}(G)=k$.

Let $U=$ independent set of size $n-k$.
Let $W=\left\{w_{1}, \ldots, w_{k}\right\}$, centers of monochromatic stars. Make W a clique using edges with distinct new colors. Now $\hat{d}(v)=k$ for all v, but $\hat{\gamma}(G)=n-k$. (No rainbow star covers two vertices of U.)

Berge's bound - Generalization

Prop. $\hat{\gamma}(G) \leq n-\hat{\Delta}(G)$, which is sharp even for highly tolerant graphs with connectivity $\hat{\Delta}(G)$.
Pf. A largest rainbow star covers $\hat{\Delta}(G)+1$ vertices. Sharpness: Construction with $\hat{\Delta}(G)=k$.

Let $U=$ independent set of size $n-k$.
Let $W=\left\{w_{1}, \ldots, w_{k}\right\}$, centers of monochromatic stars. Make W a clique using edges with distinct new colors. Now $\hat{d}(v)=k$ for all v, but $\hat{\gamma}(G)=n-k$.

Note: $\hat{\gamma}(G) / n \rightarrow 1$, but $t / n \rightarrow 1$.

Ore's Bound - Generalization

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1} n$ when G is t-tolerant and $\delta(G) \geq 1$.

Ore's Bound - Generalization

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1} n$ when G is t-tolerant and $\delta(G) \geq 1$. Lem. If G has no isolated vertices, then $V(G)$ can be covered by a family \mathcal{F} of disjoint nontrivial stars in G.

Ore's Bound - Generalization

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1} n$ when G is t-tolerant and $\delta(G) \geq 1$. Lem. If G has no isolated vertices, then $V(G)$ can be covered by a family \mathcal{F} of disjoint nontrivial stars in G. Pf. A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Ore's Bound - Generalization

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1} n$ when G is t-tolerant and $\delta(G) \geq 1$. Lem. If G has no isolated vertices, then $V(G)$ can be covered by a family \mathcal{F} of disjoint nontrivial stars in G. Pf. A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.
Pf. (of Thm) From the family \mathcal{F}, consider $F \in \mathcal{F}$ with center ν_{F}. A largest rainbow star in F has $\hat{d}_{F}\left(v_{F}\right)$ edges.

Ore's Bound - Generalization

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1} n$ when G is t-tolerant and $\delta(G) \geq 1$. Lem. If G has no isolated vertices, then $V(G)$ can be covered by a family \mathcal{F} of disjoint nontrivial stars in G. Pf. A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Pf. (of Thm) From the family \mathcal{F}, consider $F \in \mathcal{F}$ with center v_{F}. A largest rainbow star in F has $\hat{d}_{F}\left(v_{F}\right)$ edges.
Let \mathcal{F}^{\prime} consist of a largest rainbow star inside each member of \mathcal{F}. Let $s=\sum_{F \in \mathcal{F}} \hat{d}_{F}\left(V_{F}\right)$ and $k=\left|\mathcal{F}^{\prime}\right|$.

Ore's Bound - Generalization

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1} n$ when G is t-tolerant and $\delta(G) \geq 1$. Lem. If G has no isolated vertices, then $V(G)$ can be covered by a family \mathcal{F} of disjoint nontrivial stars in G. Pf. A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Pf. (of Thm) From the family \mathcal{F}, consider $F \in \mathcal{F}$ with center v_{F}. A largest rainbow star in F has $\hat{d}_{F}\left(v_{F}\right)$ edges.
Let \mathcal{F}^{\prime} consist of a largest rainbow star inside each member of \mathcal{F}. Let $s=\sum_{F \in \mathcal{F}} \hat{d}_{F}\left(v_{F}\right)$ and $k=\left|\mathcal{F}^{\prime}\right|$. \mathcal{F}^{\prime} covers $k+s$ vertices with k rainbow stars. Add l-vertex stars; now $\hat{\gamma}(G) \leq n-s$. Note that $s \geq k$.

Ore's Bound - Generalization

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1} n$ when G is t-tolerant and $\delta(G) \geq 1$. Lem. If G has no isolated vertices, then $V(G)$ can be covered by a family \mathcal{F} of disjoint nontrivial stars in G. Pf. A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Pf. (of Thm) From the family \mathcal{F}, consider $F \in \mathcal{F}$ with center v_{F}. A largest rainbow star in F has $\hat{d}_{F}\left(v_{F}\right)$ edges.
Let \mathcal{F}^{\prime} consist of a largest rainbow star inside each member of \mathcal{F}. Let $s=\sum_{F \in \mathcal{F}} \hat{d}_{F}\left(V_{F}\right)$ and $k=\left|\mathcal{F}^{\prime}\right|$. \mathcal{F}^{\prime} covers $k+s$ vertices with k rainbow stars. Add 1-vertex stars; now $\hat{\gamma}(G) \leq n-s$. Note that $s \geq k$. If $F \in \mathcal{F}$, then $|V(F)| \leq t \cdot \hat{d}_{F}\left(V_{F}\right)+1$.
Summing over \mathcal{F} yields $n \leq t s+k \leq(t+1) s$.

Ore's Bound - Generalization

Thm. $\hat{\gamma}(G) \leq \frac{t}{t+1} n$ when G is t-tolerant and $\delta(G) \geq 1$.
Lem. If G has no isolated vertices, then $V(G)$ can be covered by a family \mathcal{F} of disjoint nontrivial stars in G. Pf. A smallest edge cover has no three edges forming a triangle or a path, so it forms disjoint nontrival stars.

Pf. (of Thm) From the family \mathcal{F}, consider $F \in \mathcal{F}$ with center v_{F}. A largest rainbow star in F has $\hat{d}_{F}\left(v_{F}\right)$ edges.
Let \mathcal{F}^{\prime} consist of a largest rainbow star inside each member of \mathcal{F}. Let $s=\sum_{F \in \mathcal{F}} \hat{d}_{F}\left(V_{F}\right)$ and $k=\left|\mathcal{F}^{\prime}\right|$. \mathcal{F}^{\prime} covers $k+s$ vertices with k rainbow stars. Add 1 -vertex stars; now $\hat{\gamma}(G) \leq n-s$. Note that $s \geq k$. If $F \in \mathcal{F}$, then $|V(F)| \leq t \cdot \hat{d}_{F}\left(V_{F}\right)+1$.
Summing over \mathcal{F} yields $n \leq t s+k \leq(t+1) s$.
Thus $\hat{\gamma}(G) \leq n-s \leq \frac{t}{t+1} n$, since $s \geq \frac{1}{t+1} n$.

Characterization of Equality

Def. The t-corona $H \circ t$ is formed by adding t pendant edges at each vertex of H. A t-flare is an edge-colored t-corona H ot that is t-tolerant and, for each vertex of H, has the same color on all t new pendant edges there.

Characterization of Equality

Def. The t-corona $H \circ t$ is formed by adding t pendant edges at each vertex of H. A t-flare is an edge-colored t-corona H ot that is t-tolerant and, for each vertex of H, has the same color on all t new pendant edges there.

No rainbow star covers two leaves, so $\hat{\gamma}(G)=\frac{t}{t+1} n$.

Characterization of Equality

Def. The t-corona $H \circ t$ is formed by adding t pendant edges at each vertex of H. A t-flare is an edge-colored t-corona $H \circ t$ that is t-tolerant and, for each vertex of H, has the same color on all t new pendant edges there.

No rainbow star covers two leaves, so $\hat{\gamma}(G)=\frac{t}{t+1} n$.
Thm. Equality \Rightarrow every component is a t-flare (or monochr. $C_{3}(t=2)$ or properly edge-colored $C_{4}(t=1)$).

Characterization of Equality

Def. The t-corona $H \circ t$ is formed by adding t pendant edges at each vertex of H. A t-flare is an edge-colored t-corona $H \circ t$ that is t-tolerant and, for each vertex of H, has the same color on all t new pendant edges there.

No rainbow star covers two leaves, so $\hat{\gamma}(G)=\frac{t}{t+1} n$.
Thm. Equality \Rightarrow every component is a t-flare (or monochr. $C_{3}(t=2)$ or properly edge-colored $C_{4}(t=1)$).

- For $t=1$ (where $\hat{\gamma}(G)=\gamma(G)$), Payan-Xuong [1982] and Fink-Jacobson-Kinch-Roberts [1985] char'zd $\gamma(G)=n / 2$.

Sketch of Characterizing Equality in $\hat{\gamma}(G) \leq \frac{t}{t+1} n$

Sketch of Characterizing Equality in $\hat{\gamma}(G) \leq \frac{t}{t+1} n$

Reduce to connected G; let T be any spanning tree.

Sketch of Characterizing Equality in $\hat{\gamma}(G) \leq \frac{t}{t+1} n$

Reduce to connected G; let T be any spanning tree.
Let v be a nonleaf vertex in T. Can v have no leaf nbr?

Sketch of Characterizing Equality in $\hat{\gamma}(G) \leq \frac{t}{t+1} n$

Reduce to connected G; let T be any spanning tree.
Let v be a nonleaf vertex in T. Can v have no leaf nbr?

Sketch of Characterizing Equality in $\hat{\gamma}(G) \leq \frac{t}{t+1} n$

Reduce to connected G; let T be any spanning tree.
Let v be a nonleaf vertex in T. Can v have no leaf nbr?

If $(t+1) \dagger\left|V\left(C_{i}\right)\right|$, then strict inequality for C_{i} (and $\left.G\right)$.

Sketch of Characterizing Equality in $\hat{\gamma}(G) \leq \frac{t}{t+1} n$

Reduce to connected G; let T be any spanning tree.
Let v be a nonleaf vertex in T. Can v have no leaf nbr?

If $(t+1) \dagger\left|V\left(C_{i}\right)\right|$, then strict inequality for C_{i} (and $\left.G\right)$.
Now $(t+1) \nmid n$, and again the inequality is strict for G.

Idea, continued

$\therefore \quad v$ has leaf nbr(s), say ℓ of them, with k colors.

Idea, continued

$\therefore \quad v$ has leaf nbr(s), say ℓ of them, with k colors.

Now T has a rainbow star F at v with k leaves.

Idea, continued

$\therefore \quad v$ has leaf nbr(s), say ℓ of them, with k colors.

Now T has a rainbow star F at v with k leaves.

$$
\hat{\gamma}(G) \leq 1+\ell-k+\sum \hat{\gamma}\left(C_{i}\right)
$$

Idea, continued

$\therefore \quad v$ has leaf nbr(s), say ℓ of them, with k colors.

Now T has a rainbow star F at v with k leaves.

$$
\begin{aligned}
& \hat{\gamma}(G) \leq 1+\ell-k+\sum \hat{\gamma}\left(C_{i}\right) \\
& \frac{t}{t+1} n \leq 1+\ell-k+\frac{t}{t+1}(n-\ell-1)
\end{aligned}
$$

Idea, continued

$\therefore \quad v$ has leaf nbr(s), say ℓ of them, with k colors.

Now T has a rainbow star F at v with k leaves.

$$
\begin{aligned}
& \hat{\gamma}(G) \leq 1+\ell-k+\sum \hat{\gamma}\left(C_{i}\right) \\
& \frac{t}{t+1} n \leq 1+\ell-k+\frac{t}{t+1}(n-\ell-1)
\end{aligned}
$$

Simplifies to $\frac{\ell+1}{t+1} \geq k$. Also t-tolerant $\Rightarrow k \geq \frac{\ell}{t}$.

Idea, continued

$\therefore \quad v$ has leaf nbr(s), say ℓ of them, with k colors.

Now T has a rainbow star F at v with k leaves.

$$
\begin{aligned}
& \hat{\gamma}(G) \leq 1+\ell-k+\sum \hat{\gamma}\left(C_{i}\right) \\
& \frac{t}{t+1} n \leq 1+\ell-k+\frac{t}{t+1}(n-\ell-1)
\end{aligned}
$$

Simplifies to $\frac{\ell+1}{t+1} \geq k$. Also t-tolerant $\Rightarrow k \geq \frac{\ell}{t}$.
From $\frac{\ell+1}{t+1} \geq k \geq \frac{\ell}{t}$, conclude $\ell=t$ and $k=1$.

Idea, continued

$\therefore \quad v$ has leaf nbr(s), say ℓ of them, with k colors.

Now T has a rainbow star F at v with k leaves.

$$
\begin{aligned}
& \hat{\gamma}(G) \leq 1+\ell-k+\sum \hat{\gamma}\left(C_{i}\right) \\
& \frac{t}{t+1} n \leq 1+\ell-k+\frac{t}{t+1}(n-\ell-1)
\end{aligned}
$$

Simplifies to $\frac{\ell+1}{t+1} \geq k$. Also t-tolerant $\Rightarrow k \geq \frac{\ell}{t}$.
From $\frac{\ell+1}{t+1} \geq k \geq \frac{\ell}{t}$, conclude $\ell=t$ and $k=1$.
\therefore Every spanning tree is a t-flare.

Idea, continued

$\therefore \quad v$ has leaf nbr(s), say ℓ of them, with k colors.

Now T has a rainbow star F at v with k leaves.

$$
\begin{aligned}
& \hat{\gamma}(G) \leq 1+\ell-k+\sum \hat{\gamma}\left(C_{i}\right) \\
& \frac{t}{t+1} n \leq 1+\ell-k+\frac{t}{t+1}(n-\ell-1)
\end{aligned}
$$

Simplifies to $\frac{\ell+1}{t+1} \geq k$. Also t-tolerant $\Rightarrow k \geq \frac{\ell}{t}$.
From $\frac{\ell+1}{t+1} \geq k \geq \frac{\ell}{t}$, conclude $\ell=t$ and $k=1$.
\therefore Every spanning tree is a t-flare.
Claim: No other edges at leaves of a spanning tree T. (Otherwise, some spanning tree is not a t-flare.)

Idea, continued

$\therefore \quad v$ has leaf nbr(s), say ℓ of them, with k colors.

Now T has a rainbow star F at v with k leaves.

$$
\begin{aligned}
& \hat{\gamma}(G) \leq 1+\ell-k+\sum \hat{\gamma}\left(C_{i}\right) \\
& \frac{t}{t+1} n \leq 1+\ell-k+\frac{t}{t+1}(n-\ell-1)
\end{aligned}
$$

Simplifies to $\frac{\ell+1}{t+1} \geq k$. Also t-tolerant $\Rightarrow k \geq \frac{\ell}{t}$.
From $\frac{\ell+1}{t+1} \geq k \geq \frac{\ell}{t}$, conclude $\ell=t$ and $k=1$.
\therefore Every spanning tree is a t-flare.
Claim: No other edges at leaves of a spanning tree T. (Otherwise, some spanning tree is not a t-flare.)
(The exceptions: monochr. C_{3} and properly colored C_{4}.)

Open Problems

- Improve the bounds on the maximum value of the rainbow edge-chromatic number $\hat{\chi}^{\prime}(G)$ among t-tolerant n-vertex graphs.

Open Problems

- Improve the bounds on the maximum value of the rainbow edge-chromatic number $\hat{\chi}^{\prime}(G)$ among t-tolerant n-vertex graphs.
- Generalize other bounds on the domination number $\gamma(G)$ to the rainbow domination number $\hat{\gamma}(G)$.

Open Problems

- Improve the bounds on the maximum value of the rainbow edge-chromatic number $\hat{\chi}^{\prime}(G)$ among t-tolerant n-vertex graphs.
- Generalize other bounds on the domination number $\gamma(G)$ to the rainbow domination number $\hat{\gamma}(G)$.
- Generalize other problems on ordinary graphs to the setting of edge-colored graphs.
(Turán problems, Ramsey problems, etc.)

Open Problems

- Improve the bounds on the maximum value of the rainbow edge-chromatic number $\hat{\chi}^{\prime}(G)$ among t-tolerant n-vertex graphs.
- Generalize other bounds on the domination number $\gamma(G)$ to the rainbow domination number $\hat{\gamma}(G)$.
- Generalize other problems on ordinary graphs to the setting of edge-colored graphs.
(Turán problems, Ramsey problems, etc.)

Reference:

T. D. LeSaulnier and D. B. West, Rainbow edge-coloring and rainbow domination, Discrete Math. (2012), DOI: 10.1016/j.disc.2012.03.014.

