
Shortest path using A∗ Algorithm

Phaneendhar Reddy Vanam

Computer Science

Indiana State University

Terre Haute, IN, USA

December 13, 2011

Abstract

The main aim of this project is to find the shortest path using A
∗ Algorithm.

Contents

1 Introduction 2
1.1 Applications . 2

2 Statement of the problem 2

3 History of A∗ Algorithm 3

4 Steps involved in A∗ algorithm 3

5 Diagrams representing stages in A∗ search 5

6 Algorithm 5

7 Diagrams representing shortest path in Map of Romania [1] 8
7.1 After expanding Arad . 9
7.2 After expanding Sibiu . 9
7.3 After expanding Rimnicu . 10
7.4 After expanding Fagaras . 11
7.5 After expanding Pitesti . 11

8 Time complexity 13
8.1 Proving A∗ is optimality . 13
8.2 Proving A∗ is complete . 14
8.3 Heuristic accuracy on perfromance 14

1

1 Introduction

The A∗ Algorithm is a best-first search algorithm that finds the least cost path
from an initial configuration to a final configuration.The most essential part
of the A∗ Algorithm is a good heuristic estimate function. This can improve
the efficiency and performance of the algorithm.It is an extension of Dijkstra.s
algorithm.A∗ algorithm uses the function f(n) = g(n) + h(n).

* f(n) = g(n) + h(n).

* g(n) is the path-cost function, which is the cost from the starting node to
the current node.

* h(n) is the heuristic estimate of the distance to the goal.

A∗ Algorithm guides an optimal path to a goal if the heuristic function h(n)
is admissible.In this projct I am going to explain the algorithm and how this
algorithm is going to implemented.

1.1 Applications

The Real time applications of A∗ Algorithm are:

• A∗ mainly used in Computer Gaming, Robotics and Google maps.

• The A∗ for hueristic search is applied to construct a Neural Network struc-
ture(NS).

2 Statement of the problem

A∗ depends on the heuristic.A∗ is faster and give good results if we have a good
heuristic.In this project I am going to path finding problems, that is, planning
routes from a start node to some goal nodes in a graph.Such problems arise in
many fields of technology, for example, production planning, message routing in
large networks, resource allocation and vehicle navigation systems.I concentrate
mostly on planning a minimum cost path using the A∗ algorithm.

In some cases, A∗ is an optimal method in a large class of algorithms.This
means, roughly speaking that A∗ explores a smaller region of the search space
than the other algorithms in the given class.

A heuristic controls the search of A∗ so that unnecessary branches of the
tree of nodes that A∗ visits are pruned.The new method also finds an optimal
path to any node it visits for the first time so that every node will be visited
only once.The later is an important property considering the efficiency of the
search.

In some cases, the A∗ is an optimal resource allocation method, which means
that the number of the nodes the path finding algorithms together visit is min-
imized.

2

A∗ gives the same results as Dijkstra, but faster when we use a good heuristic.A∗

Algorithm has some conditions for to work correctly such as the estimated dis-
tance between current node and the final node should be lower than the real
distance.A∗ is guaranteed to give the shortest path when the heuristic is admis-
sible.

3 History of A∗ Algorithm

1. In 1964 Nils Nilsson invented a heuristic based approach to increase the
speed of Dijkstra’s algorithm.This algorithm was called A1.

2. In 1967 Bertram Raphael made dramatic improvements upon this algo-
rithm, but failed to show optimality.He called this algorithm A2.

3. Then in 1968 Peter E.Hart introduced an argument that proved A2 was
optimal when using a consistent heuristic with only minor changes.His
proof of the algorithm also included a section that showed that the new
A2 algorithm was the best algorithm possible given the conditions.

4. He thus named the new algorithm in Kleene star syntax to be the al-
gorithm that starts with A and includes all possible version numbers or
A∗.

4 Steps involved in A∗ algorithm

1. Let’s characterize a class of admissible heuristic search strategies, using
the evaluation function:f(n) = g(n) + h(n).

2. A∗ can be implemented more efficiently.roughly speaking, no node needs
to be processed more than once.

3. As A∗ traverses the graph, it follows a path of the lowest known cost,
keeping a sorted priority queue of alternate path segments along the way.

4. If, at any point, a segment of the path being traversed has a higher cost
than another encountered path segment, it abandons the higher-cost path
segment and traverses the lower-cost path segment.

5. Starting with the initial node, it maintains a priority queue of nodes to
be traversed, known as the open set.

6. The lower f(x) for a given node x, the higher its priority.

3

7. At each step of the A∗ algorithm, the node with the lowest f(x) value is
removed from the queue, the f and h values of its neighbors are updated
accordingly, and these neighbors are added to the queue.

8. The A∗ algorithm continues until a goal node has a lower f value than any
node in the queue.

9. The f value of the goal is then the length of the shortest path, since h
at the goal is zero in an admissible heuristic.If the actual shortest path is
desired, the algorithm may also update each neighbor with its immediate
predecessor in the best path found.

10. A closed set of nodes already traversed may be used to make the search
more efficient.This process continues until the goal is reached.

Values of Heuristic i.e straight line distance to Bucharest
This is the example for A* search, I am going to consider the map of Romania

and going to give step by step expalnation.
These are the hueristic values i.e straight line distance to Bucharest.

City Hueristic value City Heuristic
value

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Eforie 161 Pitesti 100
Fagaras 176 Rimnicu Vilcea 193
Dobreta 242 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

4

5 Diagrams representing stages in A∗ search [1]

Figure 1: Example

Figure 2: Example2

6 Algorithm

1. Put the start node bs in to OPEN

2. IF OPEN is empty THEN exit with failure.

3. Remove from OPEN and place in CLOSED a node n for which f is
mimimum.

4. IF n is a goal node THEN exit sucessfully with the solution obtained by
tracking back the pointers from n to s.

5. ElSE expand n, generating all its succesors,and attach them pointers back
to n.

5

Figure 3: Example3

Figure 4: Example4

6. FOR every succesor n’ of n DO IF n is not already in OPEN or CLOSED
THEN estimate

h(n′),

and calculate
f(n′) = g(n′) + h(n′)

where
g(n′) = g(n) + c(n, n′)

6

Figure 5: Example5

Figure 6: Example6

7

and put n’ in to OPEN

7. IF n is already in OPEN or CLOSED THEN direct its pointer along
the path yielding the lowest

g(n)

END FOR

8. GO TO step 2

7 Diagrams representing shortest path in Map
of Romania [1]

A∗ search in map of Romania

• This figure represents the intial map of Romania.The values representing
in red colour are heuristic values(i.e h(n)).

• The values representing in silver colour are path cost values(i.e g(n)).

• The values representing in blue colour are f(n) values i.e

f(n) = g(n) + h(n).

Figure 7: Intial map of Romania

8

7.1 After expanding Arad

• We have three nodes i.e Zerind, Sibiu and Timisoara.

• As we know f(n)=g(n)+h(n).

• f(Sibiu)=f(n)=140+253=393(g(n)=140 and h(n)=253).

• f(Zerind)=f(n)=75+374=449(g(n)=75 and h(n)=374).

• f(Timisoara)=f(n)=118+329=447(g(n)=118 and h(n)=329).

• From these nodes we have to choose the least f(n) value, so f(Sibiu) is least
among these nodes.(Refer example 2.)

Figure 8: After expanding Arad

7.2 After expanding Sibiu

• After expanding Sibiu we have four nodes i.e Arad, Oradea, Fagaras and
Rimnicu Vilcea.

• As we know f(n)=g(n)+h(n).

• f(Arad)=f(n)=280+366=646(g(n)=280 and h(n)=366).

• f(Oradea)=f(n)=291+380=671(g(n)=291 and h(n)=380).

• f(Fagaras)=f(n)=239+176=415(g(n)=239 and h(n)=176).

• f(Rimnicu)=f(n)=220+193=413(g(n)=220 and h(n)=193).

• From these nodes we have to choose the least f(n) value, so f(Rimnicu) is
least among these nodes, f(Rimnicu)=413.(Refer example 3).

9

Figure 9: After expanding Sibiu

Figure 10: After expanding Rimnicu Vilcea

7.3 After expanding Rimnicu

• After expanding Rimnicu node we have three nodes i.e Craiova, Pitesti
and Sibiu.

• As we know f(n)=g(n)+h(n).

• f(Craiova)=f(n)=366+160=526(g(n)=366 and h(n)=160).

• f(Pitesti)=f(n)=317+100=417(g(n)=317 and h(n)=100).

• f(Sibiu)=f(n)=300+253=553(g(n)=300 and h(n)=253).

10

• From these three nodes we have to choose the least f(n) value, so f(Fagaras)
is least among the nodes(Refer exapmle 4.)

Figure 11: After expanding Fagaras

7.4 After expanding Fagaras

• After expanding Fagaras node we have two nodes i.e Sibiu and Bucharest.

• As we know f(n)=g(n)+h(n)..

• f(Sibiu)=f(n)=338+253=591(g(n)=338 and h(n)=253).

• f(Buchrest)=f(n)=450+0=450(g(n)=450 and h(n)=0).

• From these three nodes we have to choose the least f(n) value, so f(Fagaras)
is least among the nodes(Refer exapmle 5.)

7.5 After expanding Pitesti

• After expanding Pitesti node we have three nodes i.e Bucharest, Craiova
and Rimnicu.

• As we know f(n)=g(n)+h(n).

• f(Craiova)=f(n)=455+160=615(g(n)=455 and h(n)=160).

• f(Buchrest)=f(n)=418+0=418(g(n)=418 and h(n)=0).

• f(Rimnicu)=f(n)=414+193=607(g(n)=414 and h(n)=193).

11

Figure 12: After expanding Pitesti

• From these three nodes we have to choose the least f(n) value, so f(Bucharest)
is least among the nodes(Refer exapmle 6.)

• Since Bucharest is the goal node, so h(n)=0 at Bucharest.

Figure 13: Shortest path from Arad to Bucharest

12

8 Time complexity

The time complexity of A∗ depends on the heuristic.In the worst case, the
number of nodes expanded is exponential in the length of the solution.

|h(x) − h∗(x)| = O(log(h)∗(x))

where h∗ is the optimal heuristic and it is also defined as true cost of getting
from n to the goal.For almost all heuristics in practical use, the error is at least
proportional to the path cost, and the resulting exponential growth eventually.

8.1 Proving A∗ is optimality

A∗ is the name given to the algorithm where h(node) function is admissible.In
the words it is guaranteed to provide underestimate of the true cost to the
goal. A∗ is optimal and complete.In the other words, It is guaranteed to find a
solution, and the solution is guaranteed to be the best solution. A∗ is complete
if the graph it is searching is locally finite.

Proof of A∗ is complete:
Conside two Goals G1 and G2.
The path cost of G1 is f1.
The path cost of G2 is f2, where

f2 > f1

G1 is the goal with lower cost.Let us assume A* algorithm reached G2 without
exploring G1.Let us conside node n, that is an optimal path from root node to
G1, the h is admissible heuristics.

f1 >= f1(n).

the only reason algorithm would not choose to expand n before it reaches G2
would be

f(n) >= f(G2).

By combining above 2 equations we get

f1 >= f(G2)

since G2 is goal state
h(G2) = 0

and thus
f(G2) = g(G2)

Thus we have
f1 >= g(G2)

. This, there fore contradicts our orginal assumption that G2 had a higher path
cost than G1, Which proves that A∗ can only choose least cost path to a goal.

13

8.2 Proving A∗ is complete

As said before A∗ expands in incresong f, it must expand to reach a goal
state.This is true, of course, unless there are infinetely many nodes with

f(n) < f∗

the only way there could be infinite number of nodes is either there is a node
with an infinite branching factor or there is a path with finite path cost but
an infinite number of nodes along it.Thus the correct statement is that A∗ is
complete on locally finite graphs.

d IDS A*(h1) A*(h2)
2 2.45 1.79 1.79
4 2.87 1.48 1.45
6 2.73 1.34 1.30
8 2.80 1.33 1.24
10 2.79 1.38 1.22
12 2.78 1.42 1.24

Comparing effective branching factor of A∗ algorithm with h1/h1.

8.3 Heuristic accuracy on perfromance

Consider the 8-puzzle problem.let h1=number of tiles that are in wrong posi-
tion.Generally it has none of the tiles in the goal position, so the start state
would be have h1=8, h2=the sum of the distances of tiles from their goal posi-
tions.Because tiles cannot move along diagonals, the distance will count is the
sum of the horizontal and vertical distances.This is called manhattan distance.

d IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73

Comparing search cost of A∗ algorithm with h1/h2
we can charcterize the quality of a heuristic is the effective branching factor

b*.if the total nodes expanded by A∗ for a particular problem is N and the
solution depth is d, the b* is the branching factor that a uniform tree of depth
d would have in order to contain N nodes.

N = 1 + b∗ + (b∗)2 + (b∗)3 +(b∗)d.

A well designed heuristic would have a value of

b∗ = 1

14

To test the heuristic functions h1 and h2, I randomly generated 100 problems
each with solution lenth 2,4.......12 and solved them using A∗ search with h1
and h2.This shows how h2 is better than h1, The above statement is always
true for any node n.

h2(n) > h1(n)

A∗ using h2 will expands fewer nodes tha A* using h1.

References

[1] Stuart Russell,Peter Norvig Artificial intelligence a modern approach, Sec-

ond Edition

[2] David L.Poole and Alan K.Mackworth Foundations of computational agents

Cambridge University Press, 2010

[3] Ben Coppin Artificial Intelligence Illuminated

[4] wikipedia A* search algorithm http://en.wikipedia.org/wiki/A* algorithm

[5] A* algorithm for beginners http://www.policyalmanac.org/games/aStarTutorial.htm

15

