LZW Compression

Ramana Kumar Kundella
Indiana State University

rkundella@sycamores.indstate.edu

December 13, 2014

Abstract

LZW is one of the well-known lossless compression methods. Since it has several remarkable
features such that coding is simple, prior analysis on source is unnecessary, and the whole code
table is not sent to its decoder, LZW is widely used in many applications. GIF, TIFF and PDF
(compressing images) are good examples of them. In spite of its reputation on compression,
however, few data hiding methods are directly applied to LZW itself. This may be due to few
redundancies remained in losslessly compressed data: therefore there is not enough available
room for data hiding. The existing methods are lossy, however, lossless approach is preferred
to the lossy one. In this paper, we propose the DH-LZW method that embeds data to source
data in a lossless manner. Through this paper, modifiable elements of LZW for data hiding are
introduced and a way to handle them is proposed. Experiments show very promising results.

1 Introduction

Lempel Ziv Welch (LZW) is a universal lossless data compression algorithm created by Abraham
Lempel, Jacob Ziv, and Terry Welch. It was published by Welch in 1984 as an improved imple-
mentation of the LZ78 algorithm published by Lempel and Ziv in 1978. The algorithm is simple
to implement, and has the potential for very high throughput in hardware implementations.[1]
It was the algorithm of the widely used Unix file compression utility compress, and is used in
the GIF image format.

o Uncompressed data can take up a lot of space, which is not good for limited hard drive
space and internet download speeds.

o While hardware gets better and cheaper, algorithms to reduce data size also helps tech-
nology evolve.

o One minute of uncompressed hd video can be over 1GB. How can we fit a two-hour filmon
a 25 GB bluray dics? .

The Lempel Ziv Welch algorithm is one of many algorithms used for compression. It is
typically used to compress certain image files, unix compress command, among other uses. It
is lossless, meaning no data is lost when compressing. The idea: rely on reoccuring patterns to
save data space.

For Example Consider ASCII code. Typically, every character is stored with 8 binary bits,
allowing up to 256 unique symbols for the data. This algorithm tries to extend this library



to 9-12bits per character. The new unique symbols are made up of combinations of symbols
that occurred previously in the string. Does not always compress well, especially with short,
diverse strings. But is good for compressing redundant data, and does not have to save the new
dictionary with the data: this method can both compress and uncompress data.

1.1 Our Results

We try to extend the library taking ASCII code as example achieving both compression and
decompression to any set of input file to either character or number correspondingly.

1.2 Organization

In Section 77 explains how the encoding part of code works. In Section 7?7 explains decoding code
of the algorithm. In Section 77 explain the algorithm, encoding and decoding with examples.
In Section 7?7 we discuss future work on this project.

2 Encoding Code

http://cs.indstate.edu/ rkundella/encoding.java

import java.util.*;
import java.io.*;
public class HelloWorld {

public static void main(String [Jargs) throws Exception {
int HVALUE = 27,1=0,m=0,2z=0,g=0,1i,j=0,k,c=0,p=2;;

String st;

//char []

String sCurrentline;
BufferedReader br;
br = new BufferedReader(new FileReader("D:\\testing.txt"));

while ((st = br.readlLine()) != null) {
System.out.println(st);

word[] w = new word[20];

k=j+1;
for(j=0;j<20; j+=(p-1)) //If Given Sting is RamananaRamanakumarkukund
{
wljl = new word(); //reading values to objects of word.
wljl.s = st.substring(j,j+2); //reads 2 values wlo].s = Ra, w[l]l.s = am,
}
pP=2;
do
{



for(j=2;3<20; j+=(p-1))

{
for(i=0;i<j;i++) // checks for repetition in the assigned dictionary
{ //if you see Ra,am,ma,an,na,an,na* which is repetition
if ((wli].s) .equals(w[jl.s)) // condition succeeds if repetition occurs
{
wl[jl.s = st.substring(j+g,j+(p+l+g)); // assigns new value for repetition
wl[j].value = HVALUE; //means na is repeated so it gives naR n
m = j+1;
1=j+p+g;
for(z=(j+1) ;2<20;z++)
{
wlz] .s=st.substring(1l,1+2); // assigns new value to the right of repetition
// so after giving naR our next value should start from R not
1++;
}
gt++;
}
}
}
ptt;
}while(p<5);

for(j=0;3j<20; j++)
{
System.out.println("");
System.out.print(w[j].s);
System.out.print(" ");
wlj].value=HVALUE; // assigns numerical value to objects
System.out.println(w[j].value);
HVALUE++;

}
}
}
class word{
String s = new String();
int value;
}
2.1 Decoding Code
http://cs.indstate.edu/ rkundella/decoding.java



import java.util.;
import java.io.*;
public class HelloWorld {

public static void main(String [Jargs) throws Exception{
int HVALUE = 27,1=0,m=0,z=0,g=0,i=0,j=0,k,c=0,p=2,alt=0;
String st;

// File file = new File("D:\\testing2.txt");
// file.createNewFile();

BufferedReader br;

BufferedWriter writer;

br = new BufferedReader(new FileReader("D:\\testing.txt"));
writer = new BufferedWriter(new FileWriter("D:\\testing2.txt"));

while ((st = br.readlLine()) != null) {
System.out.println(st);

word[] w = new word[20];
k=j+1;

for(j=0;3<20;j+=(p-1))

{
wlj]l = new word(); //reading values to objects of word.
wljl.s = st.substring(j,j+2);
}
pP=2;
do
{
for(j=2;3j<20;j+=(p-1))
{
for(i=0;i<j;i++) // checks for repetition in the assigned dictionary
{

if ((wl[i].s) .equals(w[j]l.s)) // condition succeeds if repetition occurs

{

wljl.s = st.substring(j+g,j+(p+1+g)); // assigns new value for repetition
w[j].value = HVALUE;
m = j+1;
1=j+p*g;



for(z=(j+1) ;2<20;z++)
{

w[z] .s=st.substring(1l,1+2); // assigns new value to the right of repetition

1++;

}

g++;

}

}
}
pt+;

>

}while(p<5);

for(j=0;3j<20; j++)
{
System.out.println("");
System.out.print(w[j].s);
System.out.print(" ");
w[j].value=HVALUE; // assigns numerical value to objects
System.out.println(w[j].value);
writer.write(w[j].s+" "+w[j].value);
writer.newLine();

HVALUE++;
}
writer.write(w[0].s.substring(0,1));
for(i=0;i<20;i++)

{

writer.write(w[i].s.substring(l,w[i].s.length()));
System.out.print(w[i].s.substring(1,wl[il.s.length()));
alt++;

if (alt==2)

{

alt = 0;

}

writer.close();



}

}

class word{
String s = new String();
int value;

}

3 The Algorithm

The scenario described by Welch’s 1984 paper[1] encodes sequences of 8-bit data as fixed-length
12-bit codes. The codes from 0 to 255 represent 1-character sequences consisting of the cor-
responding 8-bit character, and the codes 256 through 4095 are created in a dictionary for
sequences encountered in the data as it is encoded. At each stage in compression, input bytes
are gathered into a sequence until the next character would make a sequence for which there is
no code yet in the dictionary. The code for the sequence (without that character) is added to
the output, and a new code (for the sequence with that character) is added to the dictionary.

The idea was quickly adapted to other situations. In an image based on a color table, for
example, the natural character alphabet is the set of color table indexes, and in the 1980s, many
images had small color tables (on the order of 16 colors). For such a reduced alphabet, the full
12-bit codes yielded poor compression unless the image was large, so the idea of a variable-width
code was introduced: codes typically start one bit wider than the symbols being encoded, and
as each code size is used up, the code width increases by 1 bit, up to some prescribed maximum
(typically 12 bits).

Further refinements include reserving a code to indicate that the code table should be cleared
(a ”clear code”, typically the first value immediately after the values for the individual alphabet
characters), and a code to indicate the end of data (a ”stop code”, typically one greater than
the clear code). The clear code allows the table to be reinitialized after it fills up, which lets
the encoding adapt to changing patterns in the input data. Smart encoders can monitor the
compression efficiency and clear the table whenever the existing table no longer matches the
input well.

Since the codes are added in a manner determined by the data, the decoder mimics building
the table as it sees the resulting codes. It is critical that the encoder and decoder agree on
which variety of LZW is being used: the size of the alphabet, the maximum code width, whether
variable-width encoding is being used, the initial code size, whether to use the clear and stop
codes (and what values they have). Most formats that employ LZW build this information into
the format specification or provide explicit fields for them in a compression header for the data.

Encoding

A high level view of the encoding algorithm is shown here:

Initialize the dictionary to contain all strings of length one. Find the longest string W in
the dictionary that matches the current input. Emit the dictionary index for W to output and
remove W from the input. Add W followed by the next symbol in the input to the dictionary.
Go to Step 2.

A dictionary is initialized to contain the single-character strings corresponding to all the
possible input characters (and nothing else except the clear and stop codes if they’re being used).
The algorithm works by scanning through the input string for successively longer substrings until
it finds one that is not in the dictionary. When such a string is found, the index for the string
without the last character (i.e., the longest substring that is in the dictionary) is retrieved from
the dictionary and sent to output, and the new string (including the last character) is added to
the dictionary with the next available code. The last input character is then used as the next



starting point to scan for substrings.

In this way, successively longer strings are registered in the dictionary and made available for
subsequent encoding as single output values. The algorithm works best on data with repeated
patterns, so the initial parts of a message will see little compression. As the message grows,
however, the compression ratio tends asymptotically to the maximum.

Decoding;:

The decoding algorithm works by reading a value from the encoded input and outputting the
corresponding string from the initialized dictionary. In order to rebuild the dictionary in the
same way as it was built during encoding, it also obtains the next value from the input and adds
to the dictionary the concatenation of the current string and the first character of the string
obtained by decoding the next input value, or the first character of the string just output if the
next value can not be decoded (If the next value is unknown to the decoder, then it must be
the value that will be added to the dictionary this iteration, and so its first character must be
the same as the first character of the current string being sent to decoded output). The decoder
then proceeds to the next input value (which was already read in as the "next value” in the
previous pass) and repeats the process until there is no more input, at which point the final
input value is decoded without any more additions to the dictionary.

In this way the decoder builds up a dictionary which is identical to that used by the encoder,
and uses it to decode subsequent input values. Thus the full dictionary does not need be
sent with the encoded data; just the initial dictionary containing the single-character strings is
sufficient (and is typically defined beforehand within the encoder and decoder rather than being
explicitly sent with the encoded data.)

4 My Example

COMPRESSION:
I want to compress the following string:
thisisthe
h104 i104 h104
i105 s115 i105
s115 i105 s115
i105 s115 isis in the dictionary,check if ist is.
is258 t116 is258
t116 h104 th is in dictionary,check if the is.
th256 el01 th256
el01 -- el101
116 104 105 115 258 256 101
thisisthe
116 104 105 115 258 256 101

Now our symbols are made up of 9 bits each instead of 8.
So this is 7%9= 63 bits long, instead of original 72 bits.
Thats 87.5)% of what it used to be.

DECOMPRESSION:

hi257
is258

si259

ist260

the261



To uncompress, we do need to know how many bits were used in the compression, the one new informat

We can read in the characters and build the new

I want to decompress the following string:

116 104 105 115 258 256 101

dictionary the same way as we did for compressing.

Current Next Output
104 105 104
105 115 105
115 258 115
258 256 105 115
256 101 116 104

116 104 105 115 105 115 116 104 101
Or it is thisisthe

5 Example:

http://en.wikipedia.org/wiki/LempelZivWelchExample verbatin

6 QOur Contribution

Everyone should be aware there is compression happening /needed everywhere maybe in filming
or to limit hard drive space so it helps speeding up the system/internet or any other scenario.
Even though the hardware is improving and getting cheaper everyday, still we need some com-
pression algorithms for technology to evolve

References

LZW Compression
http://en.wikipedia.org/wiki/Lempel%E27,80%93Ziv},E2/80%93Welch
Example

https://www.youtube. com/watch?v=;j2HSd3HCpDs

Substrings

http://en.wikipedia.org/wiki/Substring

7 Future Work

My future work on this project, I would like to work on my code for working on string with only
one repeated values(like aaaaaaaaaaaaaaaaaaaaaaa) and would like to crate every attribute as
shown n my example.

Acknowledgements

This paper work is written with the help of information gathered while working on the project
through internet. The data presented, examples discussed are solely responsible of the author.

Add to Dicti
104 105(257)
105 115(258)

115 105 115(259

105 115 116(260

116 104 101(26



	Introduction
	Our Results
	Organization

	Encoding Code
	Decoding Code

	The Algorithm
	My Example
	Example:
	Our Contribution
	Future Work

