
A Star Algorithm

Sai Varsha Konakalla
Indiana State University

skonakalla@sycamores.indstate.edu

December 12, 2014

Abstract

The A* algorithm combines features of uniform-cost search and pure heuristic search to effec-
tively compute optimal solutions. Noted for its performance and accurancy, it enjoys widespread
use.

1 Introduction

What is A*? A* is one of the many search algorithms that takes an input, evaluates a
number of possible paths and returns a solution.

In computer science, A* (pronunced as A Star) is a computer algorithm that is widely used in
pathfinding and graph traversal, the process of plotting an effi- ciently traversable path between
points, called nodes.

The A* algorithm combines features of uniform-cost search and pure heuristic search to effec-
tively compute optimal solutions. Noted for its performance and accurancy, it enjoys widespread
use. Peter Hart, Nils Nilsson and Bertram Raphael first described the algorithm in 1968. It
is an extension of Edsger Dijkstr as’s 1959 algorithm. A* achieves better performance (with
respect to time) by using heuristics.

A Heuristic Approach The defining characteristics of the A* algorithm are the building of
a “closed list” to record areas evaluated, a “fringe list” to record areas adjacent to those already
evaluated, and the calculation of distances travelled from the “start point” with estimated
distances to the “goal point”.

The fringe list, often called the “open list” , is a list of all locations immediately adjacent to
areas that have already been explored and evalua ted (the closed list).

The closed list is a record of all locations which have been explored and evaluated by the
algorithm.

2 Little History on A*

In 1964 Nils Nilsson invented a heuristic based approach to increase the speed of Dijkstra’s
algorithm. This algorithm was called A1.

1



In 1967 Bertram Raphael made dramatic improvements upon this algorithm, but failed to
show optimality. He called this algorithm A2.

Then in 1968 Peter E.Hart introduced an argument that proved A2 was optimal when using a
consistent heuristic with only minor changes. His proof of the algorithm also included a section
that showed that the new A2 algorithm was the best algorithm possible given the conditions.

He thus named the algorithm in kleene star syntax to be the algorithm that starts with A
and includes all possible version number or A* .

3 Concept

As A* traverses the graph, it follows a path of the lowest known cost, Keeping a sorted priority
queue of alternate path segments along the way. If, at any p oint, a segment of the path being
traversed has a higher cost than another encountered path segment, it abandons the higher-cost
path segment and traverses the lower-cost path segment instead. This process continues until
the goal is reached.

4 Working of A*

A* uses a best-first search and finds a least-cost path from a given initial node to one goal node
(out of one or more possible goals). As A* traverses the graph, it follows a path of the lowest
known heuristic cost, keeping a sorted priority queue of alternate path segments along the way.
Similar to greedy best-first search but is more accurate because A* takes into account the nodes
that have already been traversed.

A* figures the least-cost path to the node which makes it a best first search algorithm. Uses
the formula f(x) = g(x) + h(x) where

g(x) is the total distance from the initial position to the current position.
h(x) is the heuristic function that is used to approximate distance from the current location

to the goal state. This function is distinct because it is a mere estimation rather than an exact
value. The more accurate the heuristic the better the faster the goal state is reach and with
much more accuracy.

f(x) = g(x) + h(x) this is the current approximation of the shortest path to the goal.

5 Example Using A* Search

Here we are using Disneyland Paris to provide an example to traverse nodes from an initial state
to a goal state.

◦ The main entrance is the initial node.

◦ The Magic Kingdom is the goal state.

◦ There are two paths that can be taken and are marked by nodes.

◦ Each node will have the f(x), g(x), and h(x).

◦ Then it will show at each node and indicate which is the next node that it will traverse
based on least path cost.

varsha.png

2



Say you are at the entrance of Disneyland Paris and you are trying to get to the Magic
Kingdom. There are two distinct paths that overlap in the center. There are two options in this
case:

◦ The purple one with the higher f(x).

◦ The green one with the lower f(x).

As mentioned before A* will choose the one with the lowest f(x). A* found the node with the
smallest f(x) value. When the goal node is popped off the pr iority queue then the search stops.

6 Pseudocode for A* Search

function A*(start,goal)

closed = empty set

q = makequeue(path(start))

while q is not empty do

p = remove first(q)

x = lastnode(p)

if x in closed then

end if
if x = goal then

return p

end if
add x to closed

for y \leftarrow successor(x) do

enqueue(q, p, y)

end for
return F ailure

end while
end function

7 Uses for A*

◦ Shortest path - Usually we are interested in finding the shortest or most efficient path
between two nodes, such as the shortest path between two tiles on a map. A boar d game

3



may need to know if a piece can reach some tile and how many moves it would require to
get there.

◦ Flood fill - If we ask a path finding algorithm to search for a path to an unreachable
destination we won’t get a result but we still get useful information. The set of nodes the
algorithm explored trying to find a path gives us all the nodes that are reachable from our
starting location. If our graph represents a map we can use this to identify if two land
masses are connected or find all the locations which are part of a lake.

◦ Decision making - Our graph does not need to represent a set of physical locations. Instead
suppose each node represents some form of technology in our game’s tech tree. We can use
a path finding algorithm as part of our AI to determine the cheapest series of upgrades
requires to reach a specific technology level.

8 Drawbacks

The main drawback of A* algorithm and indeed of any best-first search is its memory require-
ment. Since at least the entire open list must be sa ved, A* algorithm is severely space-limited
in practice, and is no more practical than best-first search algorithm on current machines. For
example, while it can be run successfully on the eight puzzle, it exhausts available memory in a
matter of minutes on the fifteen puzzle.

9 Improvements

A* is a breadth first algorithm and as such consumes huge memory to keep the data of current
proceeding nodes. The search can be more efficient if the machine searches not just for the path
from the source to the target, but also in parallel for the path from the target to the source (the
answer is found when these two searches meet at some point).

10 Practical Applications of A*

A* is the most popular choice for path finding, because it’s fairly flexible and can be used in a
wide range of contexts such as games (8-puzzle and a path finder).

◦ Variations of A*
◦ Bidirectional search
◦ Iterative deepening
◦ Beam search
◦ Dynamic weighting
◦ Bandwidth search
◦ Dynamic A* and Lifelong Planning A*

References

[1] http://www.policyalmanac.org/games/aStarTutorial.htm

[2] http://www.codeproject.com/Articles/9880/Very-simple-A-algorithm-implementation

[3] http://en.wikipedia.org/wiki/A* search algorithm

[4] http://cssubjects.skoze.com/2013/02/24/shortest-path-finding-using-a-star-search-algorithm/

4

http://www.policyalmanac.org/games/aStarTutorial.htm
http://www.codeproject.com/Articles/9880/Very-simple-A-algorithm-implementation
http://en.wikipedia.org/wiki/A*_search_algorithm
http://cssubjects.skoze.com/2013/02/24/shortest-path-finding-using-a-star-search-algorithm/

	Introduction
	Little History on A*
	Concept
	Working of A*
	Example Using A* Search
	Pseudocode for A* Search
	 Uses for A*
	Drawbacks
	 Improvements
	 Practical Applications of A*

