
Finding the Kth largest item in a list of n items

NAME: SAIKIRAN PITLA
DEPARTMENT: COMPUTER SCIENCE

INDIANA STATE UNIVERSITY
TERRE HAUTE,IN,USA

December 17, 2011

Abstract

The purpose of this project is to find the Kth largest item in a list of
n items.

In this problem, we are given an unordered list of elements and want
to find the Kth largest element. A simple way of solving this problem is
to first sort the list and then read off the Kth largest element. This takes
time O(nlogn). However, presumably finding only the Kth largest element
should be simpler than sorting the entire list. For example, we could
maintain a list of the K largest element and populate this list O(nlogk).
When K is a small constant, this takes only linear time. We will show
that we can perform selection in linear time for an arbitrary K using a
divide and conquer approach.

Contents

1 INTRODUCTION 2

2 PROBLEM STATEMENT 2

3 TIME COMPLEXITY 3

4 ANALYSIS 3

5 HISTORY 3

6 ALGORITHM 4

7 Pseudocode 5
7.1 Why only 5, why not 3? . 6

8 Example 6

1

9 APPLICATIONS 11

1 INTRODUCTION

To get intuition for how this problem can be solved, suppose that we
could find the median of a list in linear time. We claim that we can
use this as a subprocedure in a divide and conquer algorithm to find
the Kth largest element. In particular, we use the median to partition
the list into two halves(the first half, if k <= n/2 , and the second half
otherwise). This algorithm takes time cn at the first level of recursion
for some constant c, cn/2 at the next level (since we recurse in a list of
size n/2), cn/4 at the third level, and so on. The total time taken is
cn + cn/2 + cn/4 + = 2cn = o(n).

Unfortunately, however, finding the median doesn’t seem to be much
simpler than finding the kth largest element. The key idea here is that
in order to apply the recursion, we don’t need an exact median - a near-
meadian would do . In particular, suppose we could find an element at
every step such that at least 3/10th of the elements in the list are smaller
than it and at least 3/10th of the elements in the list are smaller than it
and at least 3/10th of the elements are larger than it, then we could still
apply the same divide and conquer approach as above. Assuming each
divide step takes linear time, our running time would turn out to be at
most

cn + 7/10cn + 49/100cn + = 3.33cn = o(n).

Finally, it turns out that we can find a near-median in linear time by
again applying recursion. In particular, we divide the list into group of
5 elements each, find the median in each group in constant time (since
each group is of constant size), and then find the median of these medians
recursively. The key point to note is that the final step of finding the
median of medians applies to a much smaller list-of size n/5, and so we
still get a small enough running time.
This was just a rough description and analysis of the algorithm. A more
formal analysis follows. For simplicity of analysis, we assume that all the
list sizes we enounter while running the algorithm are divisible by 5.

2 PROBLEM STATEMENT

The problem is to find the Kth largest element in a list of N elements,
where K is an integer between 1 and N .

Problem can be solved using divide and conquer and also elimination,
where elements are divided in to subsets of 5 to cut the running time.

2

3 TIME COMPLEXITY

The total running time of finding Kth largest item in a list of N items
is O(nlogn). Where, running time of sorting N items is O(nlogn) and
running time of returning the kth largest item is O(1).

4 ANALYSIS

Let S be the set of n distinct elements (so no elements are repeated) being
selected from, g = n/5 rounded down be the number of groups, and m
be the ”median of medians” elements found by the algorithm. Let C(n)
be the worst case number of comparisons between elements done by the
select algorithm when called on n elements.

Claim: At most 7n/10+2 elements in s are (strictly) greater than m
and 7n/10 + 2 elements in s are (strictly) less than m.

Proof : Let’s consider how many elements are less than the median,
the same argument can be used to bound the number of elements greater
than the median of medians. There are

g = [n/5] >= n− 4/5

groups. At least
[g/2] >= n− 4/10

of the groups have medians greater than or equal to the median of medians,
m (consider the two cases where g is even and g is odd). Each of these
>= n − 4/10 groups contains three elements greater than equal to m.
Therefore at least

3n− 4/10 > 3n/10− 2

elements are gauranteed to be greater than or equal to m. Since at least
3n/10 − 2 elements are greater than or equal to m, at most 7n/10 + 2
elements can be (strictly) less than m.

5 HISTORY

Credit for first raising the selection problem is often according to Charles
Dodgeson, who considered the proper allocation of the second and third
prizes in tennis tournnaments. Steinhaus proposed the problem of finding
V2(N). The upper bound of

n + [log2n]− 2

was given by Schreier [22], but this was not shown to the exact value until
the proof by kislitsyn [15]. Hadian and Sobel [10] gave an upper bound:

vk(n) <= n− k + (k − 1)[log2(n− k + 2)]

3

This bound is asympototically optimal for fixed k. A good account of
early work in this area can be found in [16]. Successive improvements, for
various ranges of k with respect to n, were made by kirkpatrick [13,14],
Yap [25], Hyafil [11], Motoki [17], and Ramanam and Hyafil [20]. The
classic paper by Blum, Floyd, Pratt, Rivest and Tarjan [2] in 1973 was
the first to show that M(n) = O(n), and therefore that finding the me-
dian is much easier than sorting. They gave an algorithm which requires
at most about 5.43n comparisons, and introduced a technique which has
been a basis of all subsequent improvements by Dor and Zwick [5, 6, 7].

Blum et all. [2] were also the first to give a non-trivial lower bound for
M(n), and vk(n) when k = ω(n). They showed that M(n) >= 3n/2−O(1)
and, more generally, that

Vk(n) >= n + mink, n− k −O(1)

, by using a simple adversary argument. This lower bound was succes-
sively improved by several authors (see[11, 13, 25, 18]), using more and
more sophisticated adversaries and accounting schemes, and the coeffi-
cient was raised closer to 2.

A breakthrough came in 1985, with an elegant lower bound of 2n−o(n) by
Bent and John [1]. It has taken a further ten years for this to be improved,
by Dor and Zwick (again!) [5,8]. In Section 4, I will review the adversary
argument of Blum et al., and the use of a multitude of adversaries by Bent
and john. I will also describe the improvement in [5,8].

6 ALGORITHM

Step 1 : Divide the l i s t i n to n/5 l i s t s o f 5 e lements each .

Step 2 : Find the median in each s u b l i s t o f 5 e lements .

Step 3 : Recur s i ve ly f i nd the median o f a l l the medians , c a l l i t m.

Step 4 : Pa r t i t i on the l i s t i n to unique e lements l a r g e r than m (c a l l
t h i s s u b l i s t s L1) and those no longe r than m (c a l l t h i s s u b l i s t s L2 ,
l i s t L2 inc lude m a l s o) .

Step 5 : I f K<=|L1 | , r e turn S e l e c t i o n (L1 , k) .

Step 6 : I f K−1=|L1 | , r e turn ’m’ .

Step 7 : I f K>=|L1 |+1 , re turn S e l e c t i o n (L2 ,K−|L1 | −1) .

4

7 Pseudocode

Algorithm 1 Pseudocode after dividing the list:
if k ≤ |L1| then

Selection(L1, k)
if k − 1 = |L1| then

Return m
if k > |L1|+ 1 then

Selection(L2, k − |L1| − 1)
end if

end if
end if

Let us analyse the running time. Note that we make two recursive
calls. The first is to a list of size n/5. The second is to either L1 or L2.
How large can these lists be? We argue that these lists can be no larger
than 7n/10 in size. This is because there are n/10 medians at step 3 that
smaller than m, and there than the medians, and therefore no larger than
m itself. Therefore, L2 is of size at least 3n/10, and L1 is of size at most

n− |L2| <= 7n/10

. Likewise we can argue that L1 is of size at least 3n/10 and therfore L2
is of most 7n/10.

x

Figure 1: Analysis of the algorithm.

5

Analysis of the algorithm: The n elements are represented by
small circles, and the group occupies a column. The medians of groups
are whitened, and the median-of-median is blue in color and is labeled as
x. Arrows are drawn from larger elements to smaller, from which it can
be seen that 3 out of every full group of 5 elements to the right of x are
less than x.

7.1 Why only 5, why not 3?

• Dividing the list by 5 assures a worst-case split of 70− 30.

• Atleast half of the medians greater than the median-of-medians,
hence atleast half of the n/5 blocks have atleast 3 elements and
this gives a 3n/10 split, which means the other partition is 7n/10 in
worst case.

That gives T (n) = T (n/5)+T (7n/10)+O(n). Since n/5+7n/10 < 1,
the worst-case running time is O(n).

• Choosing 3-elements blocks makes it thus: at least half of the n/3
blocks have at least 2 elements >= median-of-medians, hence this
gives a n/3 split, or 2n/3 in the worst case.

8 Example

• Find the 8th largest element from the given unordered list
of elements: 2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17,
15, 19, 20, 18, 23, 21, 22, 25, 24, 14 ?

Sol:-

• According to the first step of median of medians algorithm the un-
ordered list must be divided by 5, that is n/5 sublists. So, after we
divide the unordered list in to sublists where each sublist consists of
5 elements, that showed below:

6

2 3 5 4 1

12 11 13 16 7

8 6 10 9 17

15 19 20 18 23

21 22 25 24 14

• After we divide the list in to sublists of 5 elements, the next step is
to find out the medians of each sublist.

2 3 5 4 1

12 11 13 16 7

8 6 10 9 17

15 19 20 18 23

21 22 25 24 14

Here 5, 13, 10, 20 and 25 are the medians for 1st, 2nd, 3rd, 4th and
5th rows respectively, that shown in the above figure.

• After finding the medians from each sublists the next step is to find
the median of medians.

5 13 10 20 25

In the above figure 5, 13, 10, 20 and 25 are the medians, where ’10’
is the median of medians. So, ’10’ is considered as pivot and now
we need to split the list in to two sublists such that, one sublist
consists of elements greater than ’10’ and the other sublist consists
of elements lesser than ’10’.

7

2 3 5 4 1 7 8 6 9

|L2| = 9

10

12 11 13 16 17 15 19

20 18 23 21 22 25 24 14

|L1| = 15

• In the above figure, the elements which have lesser value than 10 are
grouped in to a list and labeled as L2 and the elements which have
greater value than 10 are grouped in to a list and labeled as L1. In
the above figure, |L1| and |L2| are the lengths of the lists L1 and L2
and ’m’ is the median.

• As per the question, we need to find the ’8th’ largest element so
consider k=8 . The step 5 of the algorithm says that ”If k <= |L1|,
return Selection(L1,k)”. Here the condition is satisfied, So the 8th
largest element is in ’L2’. Hence we eleminate list ’L1’ and the
median ’10’ and check for the element in list ’L2’. The same process
repeats, divide the list by 5 and find the medians and then median
of medians that is shown in the figure below:

12 11 13 16 17

15 19 20 18 23

21 22 25 24 14

• In the above figure you can see the list ’L2’ is divided by 5 and the
elements in red are the medians of each row. Now the next step is
to find the median of medians that is shown below:

13 20 25

• In the above figure 13, 20 and 25 are the medians and ’20’ is the
median of medians. Now ’20’ is considered as a pivot and the list
is divided in to two sublists, such that one sublist consists elements
which are greater than ’20’ and the other sublist consists elements
which are lesser than ’20’ that is shown below:

8

12 11 13 16 17

15 19 18 14

|L2| = 9
20

23 21 22 25 24

|L1| = 5

• In the above figure you can see the list is divided in to two sublists as
L1 and L2. The lengths of lists L1 and L2 are 9 and 8 respectively
and K value is 8.

• Now we will check for the the coditions, the step 7 of algorithm says
that ”If k > |L1|+1, return selection(L2, k−|L1|−1)” . As 8 > 5+1
so we will select list ’L2’ and the K value changes from 8 to 2 as
k − |L1| − 1 = 8 − 5 + 1 = 2, therefore we search for 2nd largest
element in list ’L2’.

The same process repeats dividing the list, finding the median and
then median of medians as you can see below:

12 11 13 16 17

15 19 18 14

• In the above figure 13 and 18 are the medians. The median of
medians can be 13 or 18 let us choose 13 as median of medians.

12 11

|L2| = 2
13

14 15 16 17 18 19

|L1| = 6

9

• Here the list is divided in to two sublists L1 and L2 as 13 is the
pivot. Here |L1| = 6, |L2| = 2 and the K value is 2, since k <= |L1|
so we have to search for the 2nd largest element in the list ’L1’.

14 15 16 17 18

19

• In the above figure ’16’ is the median in the 1st row and the 2nd
row consists of only one element so we just leave it.

14 15

|L2| = 2

16

17 18 19

|L1| = 3

• In the above figure, the list is divided in to two sublists by considering
’16’ as pivot. Here |L1| = 3 and K = 2 and as |L1| > k, so we need
to search for 2nd largest element in list ’L1’.

17 18 19

• In the above figure, as there are three elements the middle element
’18’ is selected as median.

17

|L2| = 1

18

19

|L1| = 1

10

Table 1: Tabular representation of example
Example

K K-1 |L1| |L1|+ 1 If, k <= |L1| If, k − 1 = |L1| If, k > |L1|+1
(sel(L1,k)) (return m) (sel(L2,k-

|L1| − 1))

8 7 15 16
√

− −
8 7 5 6 − −

√

2 1 6 7
√

− −
2 1 3 4

√
− −

2 1 1 2 −
√

−

In the above figure ’18’ is considered as pivot and the above figure
also says that lenghts of lists |L1| and |L2| are 1 and the k = 2. The
6th step of algorithm says that ”If K − 1 = |L1|, return′m′ ”, so as
it satisfies the condition return ’m’ that is ′18′.

So ’18’ is the 8th largest element in the unordered list.

9 APPLICATIONS

• Filtering outlying elements- In dealing with noisy data, it is
usually a good idea to throw out (say) the 10% largest and smallest
values. Selection can be used to identify the items defining the 10th

and 90th percentiles, and the outliers then filtered out by comparing
each item to the two selected bounds.

• Identifying the most promising candidates- In a computer
chess program, we might quickly evaluate all possible next moves,
and then decide to study the top 25% more carefully. Selection fol-
lowed by filtering is the way to go.

• Deciles and related divisions- A useful way to present income dis-
tribution in a population is to chart the salary of the people ranked at
regular intervals, say exactly at the 10th percentile, 20th percentile,
etc. Computing these values is simply selection on the appropriate
position ranks.

• Order statistics- Particularly interesting special cases of selection
include finding the smallest elements (k = 1), the largest element
(k = n), and the median element (k = n/2).

11

References

[1] T.Cormen, C.Leiserson, R. Rivest, and C. Stein

Introduction to Algorithms. MIT Press, 2001.

[2] Donald Knuth

The Art of Computer Programming.

[3] K.C. Kiwiel. On Floyd and Rivest’s SELECT Algorithm, Theoritical
Computer Sci.

[4] Steven S.Skiena The Algorithm Design Manual.

[5] Wikipedia entry,
http://en.wikipedian.org/wiki/selection_algorithm#External_links

12

