
North America Qualifier 2015

Problem A
All about that base

Photo by Ronald Woan

The base (or radix) of a positional numeral system is the number of symbols
that can be used to represent a number in that system. The base 10 system
(also known as decimal) uses 10 distinct symbols: 0, 1, . . . , 9. For example,
we interpret the number 72345 as:

7× 104 + 2× 103 + 3× 102 + 4× 101 + 5× 100.

This example illustrates that in base 10 the symbol at place P ≥ 0 (starting
from the right) is multiplied by 10P to get its value. More generally, in base
B we use B symbols to represent 0, . . . , B − 1, and the symbol at the P th
place is multiplied by BP to get its value.

Other bases commonly used in computation include base 2 (or binary, using symbols 0 and 1), base
8 (or octal, using symbols 0–7), and base 16 (or hexadecimal, using symbols 0–9 and a–f). In bases
higher than 10, letters represent the higher values. Thus in hexadecimal a–f represent the decimal values
10–15, and in bases ≥ 36 the letter z represents the decimal value 35.

Your job is to determine the bases in which given arithmetic expressions are valid. We define an ex-
pression as valid in base B if two conditions are true. First, all the operands used are interpretable in
base B as having values in the decimal range [1, 232 − 1]. Second, the expression is true. Any arbitrary
expression might be valid in zero, one, or more bases. In this problem we will only consider bases 1–36,
where base 1 is unary.

Note that following the convention listed above, unary would consist of a single symbol: 0. In this
problem, unary numbers use the symbol 1 rather than 0 (think “tally marks”). E.g., 111 in unary is
equivalent to the decimal number 3 and 1111111 in unary is equivalent to the decimal number 7.

Input

Input for this problem starts with a line containing an integer 0 ≤ N ≤ 20. The following N lines each
contain an arithmetic expression with the following form:

X op Y = Z

where X , Y , and Z are positive, whole numbers consisting of 1 to 100 symbols from the set 0–9 and
a–z, and op is one of the four operators +, -, *, /. For each statement there is at least one base
1 ≤ B ≤ 36 such that X , Y , and Z can all be interpreted in base B as having values in the decimal
range [1, 232 − 1].

Output

For each expression, list the bases in which the expression is valid (sorted in ascending base order) or
the word “invalid” if the expression not valid in any of the bases 1–36. Use symbols 1–9, then a–z, then
0 to represent bases 1–36 (with the last symbol, 0, representing base 36).

ACM-ICPC North America Qualifier 2015 Problem A: All about that base 1

https://www.flickr.com/photos/rwoan/15812368967/

North America Qualifier 2015

Sample Input 1 Sample Output 1

8
6ef + d1 = 7c0
3 / 2 = 1
444 / 2 = 222
10111 * 11 = 1000101
10111 * 11 = 111221
5k - 1z = 46
1111111111 - 1111111 = 111
2048 - 512 = 1536

g
invalid
56789abcdefghijklmnopqrstuvwxyz0
2
3456789abcdefghijklmnopqrstuvwxyz0
invalid
1
a

ACM-ICPC North America Qualifier 2015 Problem A: All about that base 2

North America Qualifier 2015

Problem B
Bobby’s Bet

Photo by StarsApart

Bobby and Betty have a bet. Betty bets Bobby that he cannot roll an S-
sided die (having values 1 through S) and obtain a value ≥ R on at least X
out of Y rolls. Betty has a variety of dice with different numbers of sides
S, and all her dice are fair (for a given die, each side’s outcome is equally
likely). In order to observe statistically rare events while still giving Bobby
a reason to bet, Betty offers Bobby W to 1 odds on each encounter. For
example, suppose Betty bets Bobby 1 bitcoin that he can’t roll at least a 5
on a 6-sided die at least two out of three times; if Bobby does, she would
give him 3 times his initial bet (i.e. she would give him 3 bitcoins). Should
Bobby take the bet (is his expected return greater than his original bet)?

Input

Input begins with an integer 1 ≤ N ≤ 10 000, representing the number of
cases that follow. The next N lines each contain five integers, R, S, X , Y , and W . Their limits are
1 ≤ R ≤ S ≤ 20, 1 ≤ X ≤ Y ≤ 10, and 1 ≤W ≤ 100.

Output

For each case, output “yes” if Bobby’s expected return is greater than his bet, or “no” otherwise. Bobby
is somewhat risk averse and does not bet if his expected return is equal to his bet.

Sample Input 1 Sample Output 1

2
5 6 2 3 3
5 6 2 3 4

no
yes

Sample Input 2 Sample Output 2

3
2 2 9 10 100
1 2 10 10 1
1 2 10 10 2

yes
no
yes

ACM-ICPC North America Qualifier 2015 Problem B: Bobby’s Bet 3

https://www.flickr.com/photos/meginsanity/6973434597/

This page is intentionally left blank.

North America Qualifier 2015

Problem C
Cantina of Babel

Photo by Brickset

Characters in Star Wars each speak a language, but
they typically understand a lot more languages that
they don’t or can’t speak. For example, Han Solo
might speak in Galactic Basic and Chewbacca might
respond in Shyriiwook; since they each understand the
language spoken by the other, they can communicate
just fine like this.

We’ll say two characters can converse if they can ex-
change messages in both directions. Even if they didn’t
understand each other’s languages, two characters can still converse as long as there is a sequence of
characters who could translate for them through a sequence of intermediate languages. For example,
Jabba the Hutt and R2D2 might be able to converse with some help. Maybe when Jabba spoke in
Huttese, Boba Fett could translate to Basic, which R2D2 understands. When R2D2 replies in Binary,
maybe Luke could translate to Basic and then Bib Fortuna could translate back to Huttese for Jabba.

In Star Wars Episode IV, there’s a scene with a lot of different characters in a cantina, all speaking
different languages. Some pairs of characters may not be able to converse (even if others in the cantina
are willing to serve as translators). This can lead to all kinds of problems, fights, questions over who
shot first, etc. You’re going to help by asking some of the patrons to leave. The cantina is a business,
so you’d like to ask as few as possible to leave. You need to determine the size of the smallest set of
characters S such that if all the characters in S leave, all pairs of remaining characters can converse.

For example, in the first sample input below, Chewbacca and Grakchawwaa can converse, but nobody
else understands Shyriiwook, so they can’t converse with others in the bar. If they leave, everyone else
can converse. In the second sample input, Fran and Ian can converse, as can Polly and Spencer, but no
other pairs of characters can converse, so either everyone but Polly and Spencer must leave or everyone
but Fran and Ian.

Input

Input starts with a positive integer, 1 ≤ N ≤ 100, the number of characters in the cantina. This is
followed by N lines, each line describing a character. Each of these N lines starts with the character’s
name (which is distinct), then the language that character speaks, then a list of 0 to 20 additional lan-
guages the character understands but doesn’t speak. All characters understand the language they speak.
All character and language names are sequences of 1 to 15 letters (a-z and A-Z), numbers, and hyphens.
Character names and languages are separated by single spaces.

Output

Print a line of output giving the size of the smallest set of characters S that should be asked to leave so
that all remaining pairs of characters can converse.

ACM-ICPC North America Qualifier 2015 Problem C: Cantina of Babel 5

https://www.flickr.com/photos/brickset/14285096344/

North America Qualifier 2015

Sample Input 1 Sample Output 1

7
Jabba-the-Hutt Huttese
Bib-Fortuna Huttese Basic
Boba-Fett Basic Huttese
Chewbacca Shyriiwook Basic
Luke Basic Jawaese Binary
Grakchawwaa Shyriiwook Basic Jawaese
R2D2 Binary Basic

2

Sample Input 2 Sample Output 2

6
Fran French Italian
Enid English German
George German Italian
Ian Italian French Spanish
Spencer Spanish Portugese
Polly Portugese Spanish

4

ACM-ICPC North America Qualifier 2015 Problem C: Cantina of Babel 6

North America Qualifier 2015

Problem D
Circuit Counting

Suppose you are given a sequence of N integer-valued vectors in the
plane (xi, yi), i = 1, . . . , N . Beginning at the origin, we can generate
a path by regarding each vector as a displacement from the previous lo-
cation. For instance, the vectors (1, 2), (2, 3), (−3,−5) form the path
(0, 0), (1, 2), (3, 5), (0, 0). We define a path that ends at the origin as a circuit. The example just given
is a circuit. We could form a path using any nonempty subset of the N vectors, while the result (circuit
or not) doesn’t depend on the ordering of the subset. How many nonempty subsets of the vectors form
circuits?

For instance, consider the vectors {(1, 2), (−1,−2), (1, 1), (−2,−3), (−1,−1)} From these vectors we
can construct 4 possible subset circuits using

{(1, 2), (−1,−2)}
{(1, 1), (−1,−1)}
{(1, 2), (1, 1), (−2,−3)}
{(1, 2), (−1,−2), (1, 1), (−1,−1)}

Input

Input begins with an integer N ≤ 40 on the first line. The next N lines each contain two integer values
x and y forming the vector (x, y), where |x|, |y| ≤ 10 and (x, y) 6= (0, 0). Since the given vectors are a
set, all vectors are unique.

Output

Output the number of nonempty subsets of the given vectors that produce circuits. It’s guaranteed that
the answer is less than 1010.

Sample Input 1 Sample Output 1

5
1 2
1 1
-1 -2
-2 -3
-1 -1

4

ACM-ICPC North America Qualifier 2015 Problem D: Circuit Counting 7

This page is intentionally left blank.

North America Qualifier 2015

Problem E
Cutting Brownies

John Horton Conway (1937-) is a British mathematician
with many contributions to mathematics. He is famous
for the invention of the cellular automaton, more popularly
known as the “Game of Life.” This problem is inspired by a
game Conway invented in the 1970s.

This game is played using a rectangular sheet of brownies
fresh out of the oven. The players are Harry Horizontal and
Vicky Vertical. Initially, there is a single piece consisting of
B ×D connected squares (the individual brownies).

At each turn, a player chooses one of the remaining pieces
and if possible, cuts it into two smaller pieces such that both
pieces have integer breadth and depth. Harry may make only
horizontal cuts, Vicky only vertical cuts. Pieces may not be rotated before or after a cut. If a player
cannot cut any of the remaining pieces, that player loses.

Let’s consider some examples. The simplest game is . In this case, neither Harry nor Vicky can

make a move, so whoever starts loses. On the other hand, is a win for Harry, no matter who starts.
Similarly, is a win for Vicky, no matter who starts.

Consider , which is a loss for whoever starts. For instance, if Vicky starts, her only move leaves

Harry with , and once he cuts any of the pieces, Vicky is left with , , (in any order) and
thus again without moves. For reasons of symmetry, Harry loses if he is made to start.

Intuition might tell us that Vicky should tend to win if the initial sheet is broader than it is deep (since

such sheets yield more opportunities for vertical cuts), but consider . If Harry starts, his only
possible move leaves Vicky with , and a win. But if Vicky starts, any possible move leaves

Harry with , . Harry responds and leaves Vicky with , , , which Vicky will eventually

lose since there are no moves left in the 2 sheets and whoever makes the first move on loses.

On the other hand, is a winner for Vicky, no matter who starts. If Harry starts, he runs out of

moves after his first cut. If Vicky starts, her best move is to cut in the center, leaving Harry with ,

, which he loses because each game is lost by whoever moves first.

Given the initial size of the sheet, and given who starts the game, write a program that computes if the
starting player has a strategy to force a win!

Input

The first line contains an integer 1 ≤ N ≤ 10 denoting the number of test cases that follow. Each test
case consists of a single line containing two integers B and D, and a string S. Here B denotes the initial
breadth of the sheet (1 ≤ B ≤ 500), D denotes the initial depth of the sheet (1 ≤ D ≤ 500) and S is
either Harry or Vicky depending on whether Harry or Vicky moves first.

ACM-ICPC North America Qualifier 2015 Problem E: Cutting Brownies 9

North America Qualifier 2015

Output

For each test case, output whether the player who starts can force a win in the game. Output the player’s
name followed by can win or cannot win.

Sample Input 1 Sample Output 1

5
1 1 Harry
2 2 Vicky
3 2 Vicky
4 2 Vicky
6 8 Harry

Harry cannot win
Vicky cannot win
Vicky cannot win
Vicky can win
Harry can win

ACM-ICPC North America Qualifier 2015 Problem E: Cutting Brownies 10

North America Qualifier 2015

Problem F
Quick Brown Fox

Photo by Neil McIntosh

A pangram is a phrase that includes at least one occurrence of each of the 26
letters, ‘a’. . .‘z’. You’re probably familiar with this one: “The quick brown
fox jumps over the lazy dog.”

Your job is to recognize pangrams. For phrases that don’t contain every
letter, report what letters are missing. We’ll say that a particular letter occurs
in the phrase if it occurs as either upper case or lower case.

Input

Input starts with a line containing an integer 1 ≤ N ≤ 50. The next N lines are each a single phrase,
possibly containing upper and lower case letters, spaces, decimal digits and punctuation characters ‘.’,
‘,’, ‘?’, ‘!’, ‘’’ and ‘"’. Each phrase contains at least one and no more than 100 characters.

Output

For each input phrase, output “pangram” if it qualifies as a pangram. Otherwise, output the word “miss-
ing” followed by a space and then the list of letters that didn’t occur in the phrase. The list of missing
letters should be reported in lower case and should be sorted alphabetically.

Sample Input 1

3
The quick brown fox jumps over the lazy dog.
ZYXW, vu TSR Ponm lkj ihgfd CBA.
.,?!’" 92384 abcde FGHIJ

Sample Output 1

pangram
missing eq
missing klmnopqrstuvwxyz

ACM-ICPC North America Qualifier 2015 Problem F: Quick Brown Fox 11

https://www.flickr.com/photos/27887748@N00/2741835743/

This page is intentionally left blank.

North America Qualifier 2015

Problem G
Safe Passage

Photo by Ian Burt

A group of friends snuck away from their school campus, but now they must
return from the main campus gate to their dorm while remaining undetected by
the many teachers who patrol the campus. Fortunately, they have an invisibility
cloak, but it is only large enough to cover two people at a time. They will take
turns as individuals or pairs traveling across campus under the cloak (and by
necessity, returning the cloak to the gate if others remain). Each student has a
maximum pace at which he or she is able to travel, yet if a pair of students are
walking under the cloak together, they will have to travel at the pace of the slower
of the two. Their goal is to have everyone back at the dorm as quickly as possible.

As an example, assume that there are four people in the group, with person A able
to make the trip in 1 minute, person B able to travel in 2 minutes, person C able
to travel in 7 minutes, and person D able to travel in 10 minutes. It is possible to
get everyone to the dorm in 17 minutes with the following plan:

– A and B go from the gate to the dorm together (taking 2 minutes)
– A returns with the cloak to the gate (taking 1 minute)
– C and D go from the gate to the dorm together (taking 10 minutes)
– B returns with the cloak to the gate (taking 2 minutes)
– A and B go from the gate to the dorm together (taking 2 minutes)

Input

The input is a single line beginning with an integer, 2 ≤ N ≤ 15. Following that are N positive integers
that respectively represent the minimum time in which each person is able to cross the campus if alone;
these times are measured in minutes, with each being at most 5 000. (It is a very large campus!)

Output

Output the minimum possible time it takes to get the entire group from the gate to the dorm.

Sample Input 1 Sample Output 1

2 15 5 15

Sample Input 2 Sample Output 2

4 1 2 7 10 17

Sample Input 3 Sample Output 3

5 12 1 3 8 6 29

ACM-ICPC North America Qualifier 2015 Problem G: Safe Passage 13

https://www.flickr.com/photos/oddsock/7210593340/

This page is intentionally left blank.

North America Qualifier 2015

Problem H
Secret Message

Jack and Jill developed a special encryption method, so they can enjoy conversations without worrrying
about eavesdroppers. Here is how: let L be the length of the original message, and M be the smallest
square number greater than or equal to L. Add (M − L) asterisks to the message, giving a padded
message with length M . Use the padded message to fill a table of size K ×K, where K2 = M . Fill
the table in row-major order (top to bottom row, left to right column in each row). Rotate the table 90
degrees clockwise. The encrypted message comes from reading the message in row-major order from
the rotated table, omitting any asterisks.

For example, given the original message ‘iloveyouJack’, the message length is L = 12. Thus the padded
message is ‘iloveyouJack****’, with length M = 16. Below are the two tables before and after rotation.

i l o v
e y o u
J a c k
* * * *

* J e i
* a y l
* c o o
* k u v

Then we read the secret message as ‘Jeiaylcookuv’.

Input

The first line of input is the number of original messages, 1 ≤ N ≤ 100. The following N lines each
have a message to encrypt. Each message contains only characters a–z (lower and upper case), and has
length 1 ≤ L ≤ 10 000.

Output

For each original message, output the secret message.

Sample Input 1 Sample Output 1

2
iloveyoutooJill
TheContestisOver

iteiloylloooJuv
OsoTvtnheiterseC

ACM-ICPC North America Qualifier 2015 Problem H: Secret Message 15

This page is intentionally left blank.

North America Qualifier 2015

Problem I
Simon Says

Photo by David Amsler

In the game “Simon Says” one person plays the role of Simon, who gives
instructions to everyone else playing the game. The tricky part is that if
Simon begins his instruction with “Simon says” then everyone else must
follow the instruction (or they lose the game); if Simon gives an instruc-
tion that does not begin with “Simon says” then everyone is supposed to
completely ignore the instruction (or they lose the game)!

Simon tries his or her best to trick the other players into following the wrong
instructions. Simon might begin by saying “Simon says touch your nose.”
and follow this with “Stop touching your nose.” Anyone who stops touching
their nose loses! The last player still remaining, who has correctly followed precisely the instructions
that began with “Simon says” (and only these instructions), gets to be Simon next.

As a child, you were horrible at this game. Your older siblings were always able to trick you into
following the wrong instructions. Well, you will have the last laugh: now that you are a computer
programmer, you can write a computer program that can help you play the game perfectly. You only
need to make sure the program is able to determine which instructions to follow and which to ignore.

Are you up to the challenge? Can you craft a computer program that never makes any mistakes in the
game? If you can, then surely fame and glory shall come your way for being the most unstoppable
player of Simon Says ever!

Input

Input starts with a line containing an integer 1 ≤ N ≤ 1 000. Each of the next N lines is one command,
of length at most 100 characters. Each command is a properly-capitalized sequence of one or more
words, separated by a single space between each pair of words, ending in a period. Some commands
begin with “Simon says” and others may not. If a command begins with “Simon says”, there will always
be another space and at least one additional word after “says”. No lines contain leading or trailing space.

Output

For each line that begins with precisely “Simon says”, output the rest of the line. Each line that does not
begin with precisely “Simon says” should be ignored.

Sample Input 1 Sample Output 1

1
Simon says smile.

smile.

ACM-ICPC North America Qualifier 2015 Problem I: Simon Says 17

https://www.flickr.com/photos/amslerpix/7701783678/

North America Qualifier 2015

Sample Input 2 Sample Output 2

3
Simon says raise your right hand.
Lower your right hand.
Simon says raise your left hand.

raise your right hand.
raise your left hand.

Sample Input 3 Sample Output 3

3
Raise your right hand.
Lower your right hand.
Simon says raise your left hand.

raise your left hand.

ACM-ICPC North America Qualifier 2015 Problem I: Simon Says 18

North America Qualifier 2015

Problem J
Torn To Pieces

You have arrived in The Big City but your journey is not yet complete. You must still navigate the
subway and get to your final destination. The information booth in the subway station is unattended and
fresh out of maps of the subway system. On the floor you notice fragments of a map. Can you piece
together enough of the map to figure out how to get to your final destination?

Each fragment of the map happens to perfectly contain a single subway station while also identifying
all of the other stations that it connects to. Each connection between stations is bi-directional such that
it can be travelled going either direction. Using all of the available fragments, your task is to determine
the sequence of stations you must pass through in order to reach your final destination or state that there
is no route if you don’t have enough information to complete your journey.

Input

The first line of input has an integer, 2 ≤ N ≤ 32, that identifies the number of pieces of the map that
were found.

The following N lines each describe a station depicted on one of those pieces. Each of these lines starts
with the name of the station they describe and is followed by a space-separated list of all of the station
names that are directly connected to that station (there may be as many as N − 1).

The final line identifies a starting station and a destination station. The destination station is guaranteed
to be different than the starting station.

Each station name is a string of up to 20 characters using only letters a–z and A–Z. It is guaranteed that
there is at most one simple route (without revisiting stations) from the starting station to the destination
station.

Output

Give the sequence of stations that leads from the starting station to the destination station. Separate
station names with spaces. If there are not enough pieces of the map to find a route from the starting
station to the destination station then output “no route found”.

ACM-ICPC North America Qualifier 2015 Problem J: Torn To Pieces 19

North America Qualifier 2015

Sample Input 1 Sample Output 1

3
Uptown Midtown
Midtown Uptown Downtown
Downtown Midtown
Uptown Downtown

Uptown Midtown Downtown

Sample Input 2 Sample Output 2

6
A B
B A D
C D
E D F G
F E
G E
F A

F E D B A

Sample Input 3 Sample Output 3

4
FirstStop SecondStop
SecondStop FirstStop ThirdStop
FifthStop FourthStop SixthStop
SixthStop FifthStop
FirstStop FifthStop

no route found

ACM-ICPC North America Qualifier 2015 Problem J: Torn To Pieces 20

North America Qualifier 2015

Problem K
UnDetected

The Department of Defense has been designing autonomous robots that can infiltrate war zones and
other hostile places in order to carry out missions. Now they want to test their latest design, the Penetra-
tor1700, and they’ve hired you to help design the test environment.

The test environment is a rectangular field with some sensors placed within the field. Each sensor has a
certain radius defining the region within which it can detect a robot. You want to design the field to have
as many sensors as possible while still permitting a route across the field that avoids detection.

The field is a region of the coordinate plane defined by 0 ≤ x ≤ 200 and 0 ≤ y ≤ 300. The robot can be
modeled by a point that must remain on the field at all times. It starts at the bottom of the field (y = 0)
and must end at the top of the field (y = 300), and must not pass within range of any sensor. There are
N sensor locations given by triples (x, y, r) of integers, where each (x, y) is a point on the field, and r is
its radius of detection. The implied sensor circles may overlap, but will never be tangent with each other
nor with the boundary of the field. All sensors are initially inactive. You must find the largest value of k
such that if sensors 1, 2, 3, . . . , k are activated there is a path for the robot across the field, but no path if
the (k+1)st sensor is also activated. It is guaranteed that there is no path if all N sensors are activated.

Figure K.1: Sensor circles corresponding to the first three sample inputs.

Input

Input begins with a positive integer N ≤ 200. Each of the next N lines has three space-separated
integers, representing x, y, r for a sensor, where r ≤ 300. All sensors lie at different (x, y) positions.
The first three sample inputs below correspond to the figure shown.

Output

Output a single integer (which may be 0) giving the largest k as described above.

ACM-ICPC North America Qualifier 2015 Problem K: UnDetected 21

North America Qualifier 2015

Sample Input 1 Sample Output 1

6
36 228 58
164 224 58
88 170 42
93 105 42
167 85 58
28 44 58

2

Sample Input 2 Sample Output 2

6
36 228 58
28 44 58
164 224 58
88 170 42
93 105 42
167 85 58

3

Sample Input 3 Sample Output 3

6
28 44 58
36 228 58
88 170 42
93 105 42
164 224 58
167 85 58

4

Sample Input 4 Sample Output 4

3
100 150 101
30 30 10
170 30 100

0

ACM-ICPC North America Qualifier 2015 Problem K: UnDetected 22

