Lower Bounds in Theory of Computing

Jeff Kinne

Indiana State University, Math and CS Dept.

Math and CS Dept. Seminar, March 21, 2012
Notes

- Pictures on the chalk board (sorry to online viewers...)
- Slides will be online at http://www.kinnejeff.com
- General-purpose links for complexity theory:
 Computational Complexity: A Modern Approach
 lecture notes
 Wikipedia
Goal

What is the smallest running time possible?
Goal

What is the smallest running time possible?

- Requires: upper bound and lower bound
Goal

What is the smallest running time possible?

- Requires: **upper bound** and **lower bound**
Goal

What is the smallest running time possible?

- Requires: upper bound and lower bound

Examples

- Addition
Goal

What is the smallest running time possible?

- Requires: **upper bound** and **lower bound**

Examples

- Addition
- Multiplication
Goal
What is the smallest running time possible?
- Requires: upper bound and lower bound

Examples
- Addition
- Multiplication
- 3-coloring
Goal

What is the smallest running time possible?
- Requires: upper bound and lower bound

Examples

- Addition
- Multiplication
- 3-coloring
- Factoring
Other Resources/Goals

- Memory space
Other Resources/Goals

- Memory space
- Nondeterminism
Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
- Quantumness
Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
- Quantumness
- ...

See, e.g., the "Complexity Zoo"
Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
- Quantumness
- ...
- Average-case
Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
- Quantumness
- ...
- Average-case, approximation
Other Resources/Goals

- Memory space
- Nondeterminism
- Communication
- Non-uniformity
- Randomness
- Quantumness
- ...
- Average-case, approximation

- See, e.g., the “Complexity Zoo”
Why the Zoo of Complexity Classes?

- Diverse goals in the world
Why the Zoo of Complexity Classes?

- Diverse goals in the world
- Class captures important/interesting problems – e.g. NP
NP
P versus NP problem
P versus NP problem

If P = NP...

Perfect optimization
Computer search to prove unknown conjectures
No cryptography/encryption
(see one-way functions, RSA)

If P \neq NP...

Cannot approximate some optimization problems
(PCP Theorem – "randomized" proofs)
Need more to get cryptography
NP still could be "normally" easy
P versus NP problem

If $P = NP$...

- Perfect optimization
P versus NP problem

If $P = NP$...

- Perfect optimization
- Computer search to prove unknown conjectures
P versus NP problem

If $P = NP$...

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption
P versus NP problem

If $P = NP$...

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)
P versus NP problem

If $P = NP$...

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

If $P \neq NP$...
P versus NP problem

If $P = NP$...

- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

If $P \neq NP$...

- Cannot approximate some optimization problems
P versus NP problem

If $P = NP$...
- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

If $P \neq NP$...
- Cannot approximate some optimization problems
 (PCP Theorem – “randomized” proofs)
P versus NP problem

If $P = NP$...
- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

If $P \neq NP$...
- Cannot approximate some optimization problems (PCP Theorem – “randomized” proofs)
- Need more to get cryptography
P versus NP problem

If \(P = NP \)...
- Perfect optimization
- Computer search to prove unknown conjectures
- No cryptography/encryption (see one-way functions, RSA)

If \(P \not= NP \)...
- Cannot approximate some optimization problems (PCP Theorem – “randomized” proofs)
- Need more to get cryptography
- NP still could be “normally” easy
Definition

\[\text{NTIME}(t) – \text{guess } t \text{ size certificate} \]
Definition

$\text{NTIME}(t) – \text{guess } t \text{ size certificate}$

Trivial Upper Bound

$\text{NTIME}(t)$ can be solved in $2^{O(t)}$ time.
Definition

NTIME(t) – guess t size certificate

Trivial Upper Bound

NTIME(t) can be solved in $2^{O(t)}$ time.

Slightly better, e.g., 3-coloring

- $\sum_{k=0}^{n} \binom{n}{k} k^2 3^{k/3} \leq n^2 \sum_{k=0}^{n} \binom{n}{k} 3^{k/3} = n^2 (1 + 3^{1/3})^n$
Definition

$\text{NTIME}(t)$ – guess t size certificate

Trivial Upper Bound

$\text{NTIME}(t)$ can be solved in $2^{O(t)}$ time.

Slightly better, e.g., 3-coloring

1. $\sum_{k=0}^{n} \binom{n}{k} k^2 3^{k/3} \leq n^2 \sum_{k=0}^{n} \binom{n}{k} 3^{k/3} = n^2 (1 + 3^{1/3})^n$
2. Number of maximal independent sets is at most $3^{n/3}$.
Definition

NTIME(t) – guess t size certificate

Trivial Upper Bound

NTIME(t) can be solved in $2^{O(t)}$ time.

Slightly better, e.g., 3-coloring

- $\sum_{k=0}^{n} \binom{n}{k} k^{2} 3^{k/3} \leq n^{2} \sum_{k=0}^{n} \binom{n}{k} 3^{k/3} = n^{2}(1 + 3^{1/3})^{n}$
- Number of **maximal independent sets** is at most $3^{n/3}$.
- Look at all subgraphs G_S from smallest to largest
Definition
NTIME(t) – guess t size certificate

Trivial Upper Bound
NTIME(t) can be solved in $2^{O(t)}$ time.

Slightly better, e.g., 3-coloring

- $\sum_{k=0}^{n} \binom{n}{k} k^2 3^{k/3} \leq n^2 \sum_{k=0}^{n} \binom{n}{k} 3^{k/3} = n^2 (1 + 3^{1/3})^n$
- Number of **maximal independent sets** is at most $3^{n/3}$.
- Look at all subgraphs G_S from smallest to largest
- $\text{OPT}(G_S) = 1 + \min(\text{OPT}(G_{S-T}) — T \text{ a max ind set in } G_S)$.
Definition

$\text{NTIME}(t)$ – guess t size certificate

Trivial Upper Bound

$\text{NTIME}(t)$ can be solved in $2^{O(t)}$ time.

Slightly better, e.g., 3-coloring

- $\sum_{k=0}^{n} \binom{n}{k} k^2 3^{k/3} \leq n^2 \sum_{k=0}^{n} \binom{n}{k} 3^{k/3} = n^2 (1 + 3^{1/3})^n$

- Number of **maximal independent sets** is at most $3^{n/3}$.

- Look at all subgraphs G_S from smallest to largest

- $\text{OPT}(G_S) = 1 + \min(\text{OPT}(G_{S-T}) - T \text{ a max ind set in } G_S)$

survey on exact NP-complete algorithms
Exponential Time Hypothesis

3SAT (and some other NP-complete problems) cannot be decided in time $2^{\varepsilon n}$ time for some $\varepsilon > 0$.
Exponential Time Hypothesis

3SAT (and some other NP-complete problems) cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon > 0$.

- Not true for 3-coloring.
Exponential Time Hypothesis

3SAT (and some other NP-complete problems) cannot be decided in time $2^{\varepsilon n}$ time for some $\varepsilon > 0$.

- Not true for 3-coloring.
- How close are we to proving this?
Exponential Time Hypothesis

3SAT (and some other NP-complete problems) cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon > 0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems – e.g. Halting Problem
Exponential Time Hypothesis

3SAT (and some other NP-complete problems) cannot be decided in time $2^{\varepsilon n}$ time for some $\varepsilon > 0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems – e.g. **Halting Problem**
- Almost all decision problems are undecidable.
Exponential Time Hypothesis

3SAT (and some other NP-complete problems) cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon > 0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems – e.g. Halting Problem
- Almost all decision problems are undecidable.
- Smallest class known to require 2^n time?
Exponential Time Hypothesis

3SAT (and some other NP-complete problems) cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon > 0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems – e.g. Halting Problem
- Almost all decision problems are undecidable.
- Smallest class known to require 2^n time? ...
Exponential Time Hypothesis

3SAT (and some other NP-complete problems) cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon > 0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems – e.g. Halting Problem
- Almost all decision problems are undecidable.
- Smallest class known to require 2^n time? ... Exponential Time
Exponential Time Hypothesis

3SAT (and some other NP-complete problems) cannot be decided in time $2^{\epsilon n}$ time for some $\epsilon > 0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems – e.g. Halting Problem
- Almost all decision problems are undecidable.
- Smallest class known to require 2^n time? ... Exponential Time (diagonalization...)

- Computational Complexity
- NP
- Exponential Lower Bounds
Exponential Time Hypothesis

3SAT (and some other NP-complete problems) cannot be decided in time $2^{\varepsilon n}$ time for some $\varepsilon > 0$.

- Not true for 3-coloring.
- How close are we to proving this?
- Undecidable problems – e.g. Halting Problem
- Almost all decision problems are undecidable.
- Smallest class known to require 2^n time? ... Exponential Time (diagonalization...)
- It could be that 3SAT is in $O(n)$ time.
Theorem

SAT cannot be solved in simultaneous time n^c and space n^d when $c \cdot (c + d) < 2$.
Theorem

SAT cannot be solved in simultaneous time n^c *and space* n^d *when* $c \cdot (c + d) < 2$.

survey on similar results
Theorem

SAT cannot be solved in simultaneous time n^c and space n^d when $c \cdot (c + d) < 2$.

survey on similar results

- Definition: $\text{NTIME}(n^2)$ – guess $O(n^2)$ size certificate
Theorem

*SAT cannot be solved in simultaneous time n^c and space n^d when $c \cdot (c + d) < 2$."

survey on similar results

- Definition: $\text{NTIME}(n^2)$ – guess $O(n^2)$ size certificate
- If theorem false...
Theorem

SAT cannot be solved in simultaneous time n^c and space n^d when $c \cdot (c + d) < 2$.

survey on similar results

- Definition: NTIME(n^2) – guess $O(n^2)$ size certificate
- If theorem false...
- NTIME(n^2) \subseteq time n^{2c}, space n^{2d}
Theorem

SAT cannot be solved in simultaneous time n^c and space n^d when $c \cdot (c + d) < 2$.

survey on similar results

- Definition: $\text{NTIME}(n^2)$ – guess $O(n^2)$ size certificate
- If theorem false...
- $\text{NTIME}(n^2) \subseteq \text{time } n^{2c}$, space n^{2d}
- $\subseteq \exists \forall \text{ TIME}(n^{c+d})$
Theorem

SAT cannot be solved in simultaneous time n^c and space n^d when $c \cdot (c + d) < 2$.

survey on similar results

- Definition: $\text{NTIME}(n^2)$ – guess $O(n^2)$ size certificate
- If theorem false...
- $\text{NTIME}(n^2) \subseteq \text{time } n^{2c}, \text{ space } n^{2d}$
- $\subseteq \exists \forall \text{TIME}(n^{c+d})$
- $\subseteq \text{NTIME}(n^{c \cdot (c+d)})$
Theorem

SAT cannot be solved in simultaneous time n^c and space n^d when $c \cdot (c + d) < 2$.

survey on similar results

- Definition: $\text{NTIME}(n^2)$ – guess $O(n^2)$ size certificate
- If theorem false...
- $\text{NTIME}(n^2) \subseteq \text{time } n^{2c}, \text{space } n^{2d}$
- $\subseteq \exists \forall \text{ TIME}(n^{c+d})$
- $\subseteq \text{NTIME}(n^{c\cdot(c+d)})$
- Contradiction if $2 > c \cdot (c + d)$
Exponential Lower Bounds
Parity

Is number of 1’s in binary string even or odd?

Theorem (Hastad)
A depth d circuit for parity has size at least $2^{\epsilon} \cdot n^{1/(d-1)}$ for some constant $\epsilon > 0$.

Theorem (Razborov-Smolensky)
Same as above, but size is $2^{\epsilon} \cdot n^{1/(2^d)}$.

The Complexity of Finite Functions, Boppana and Sipser
Parity

Is number of 1’s in binary string even or odd?

Theorem (Hastad)

A depth d circuit for parity has size at least $2^\varepsilon \cdot n^{1/(d-1)}$ for some constant $\varepsilon > 0$.
Parity
Is number of 1’s in binary string even or odd?

Theorem (Hastad)
A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1/(d-1)}}$ for some constant $\epsilon > 0$.

Theorem (Razborov-Smolensky)
Same as above, but size is $2^{\epsilon \cdot n^{1/(2d)}}$.
Parity
Is number of 1’s in binary string even or odd?

Theorem (Hastad)
A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1/(d-1)}}$ for some constant $\epsilon > 0$.

Theorem (Razborov-Smolensky)
Same as above, but size is $2^{\epsilon \cdot n^{1/(2d)}}$.

The Complexity of Finite Functions, Boppana and Sipser
Theorem (Razborov-Smolensky)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1/(2d)}}$ for some constant $\epsilon > 0$.
Theorem (Razborov-Smolensky)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1/(2d)}}$ for some constant $\epsilon > 0$.

- Depth d, size S circuit
Theorem (Razborov-Smolensky)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1/(2d)}}$ for some constant $\epsilon > 0$.

- Depth d, size S circuit
- \Rightarrow degree \sqrt{n} poly, makes at most $2^n \cdot \frac{S}{2^{n^{1/(2d)}/2}}$ mistakes
Theorem (Razborov-Smolensky)

A depth d circuit for parity has size at least $2^{\epsilon \cdot n^{1/(2d)}}$ for some constant $\epsilon > 0$.

- Depth d, size S circuit
- \Rightarrow degree \sqrt{n} poly, makes at most $2^n \cdot \frac{S}{2n^{1/(2d)} - 2}$ mistakes
- Any \sqrt{n}-degree poly makes at least $2^n \cdot \frac{1}{50}$ mistakes
“Enhanced” constant-depth circuits
“Enhanced” constant-depth circuits

- Allow more gates than just AND, OR, NOT
“Enhanced” constant-depth circuits

- Allow more gates than just AND, OR, NOT
- mod p, parity, majority
“Enhanced” constant-depth circuits

- Allow more gates than just AND, OR, NOT
- mod p, parity, majority
- Intermediate between constant-depth and not

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n) = \Omega(n^d)$ such that $S(n) < 2^n$.

14 / 16
“Enhanced” constant-depth circuits

- Allow more gates than just AND, OR, NOT
- mod p, parity, majority
- Intermediate between constant-depth and not

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$,
"Enhanced" constant-depth circuits

- Allow more gates than just AND, OR, NOT
- mod p, parity, majority
- Intermediate between constant-depth and not

Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{O(d)}(n) < 2^n$.
Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n) < 2^n$.
Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n) < 2^n$.

- “Hard” problem H in EXP requires size 2^n (uniform) circuits
Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{O(d)}(n) < 2^n$.

- “Hard” problem H in EXP requires size 2^n (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{O(d)}(n) < 2^n$.

- “Hard” problem H in EXP requires size 2^n (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S(2^n)$, depth d circuit C for H
Theorem (Allender, ..., Kinne)

Uniform depth d **circuits with majority gates for matrix permanent** have size at least $S(n)$, for $S(n)$ that satisfy $S^{(O(d))}(n) < 2^n$.

- “Hard” problem H in EXP requires size 2^n (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S(2^n)$, depth d circuit C for H
- Bottom majority gates in C \Rightarrow
Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{O(d)}(n) < 2^n$.

- “Hard” problem H in EXP requires size 2^n (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S(2^n)$, depth d circuit C for H
- Bottom majority gates in C \Rightarrow
 permanent question of size $\approx \log(S(2^n)) + n$
Theorem (Allender, ..., Kinne)

Uniform depth \(d\) **circuits with majority gates for matrix permanent** have size at least \(S(n)\), for \(S(n)\) that satisfy \(S^{O(d)}(n) < 2^n\).

- “Hard” problem \(H\) in EXP requires size \(2^n\) (uniform) circuits
- Assume depth \(d\), size \(S(n)\) circuits for permanent
- \(\Rightarrow\) size \(\approx S(2^n)\), depth \(d\) circuit \(C\) for \(H\)
- Bottom majority gates in \(C\) \(\Rightarrow\)
 - permanent question of size \(\approx \log(S(2^n)) + n\)
 - size \(S_1 = S(\log(S(2^n)) + n)\) circuit
Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S(O(d))(n) < 2^n$.

- “Hard” problem H in EXP requires size 2^n (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
- \Rightarrow size $\approx S(2^n)$, depth d circuit C for H
- Bottom majority gates in C \Rightarrow
 - permanent question of size $\approx \log(S(2^n)) + n$
 - size $S_1 = S(\log(S(2^n)) + n)$ circuit
- Next level of majority gates \Rightarrow
Theorem (Allender, ..., Kinne)

Uniform depth d circuits with majority gates for matrix permanent have size at least $S(n)$, for $S(n)$ that satisfy $S^{O(d)}(n) < 2^n$.

- “Hard” problem H in EXP requires size 2^n (uniform) circuits
- Assume depth d, size $S(n)$ circuits for permanent
 \Rightarrow size $\approx S(2^n)$, depth d circuit C for H
- Bottom majority gates in C \Rightarrow
 permanent question of size $\approx \log(S(2^n)) + n$
 size $S_1 = S(\log(S(2^n)) + n)$ circuit
- Next level of majority gates \Rightarrow
 permanent question of size $\approx \log(S(2^n)) + n + S_1$
Theorem (Allender, ..., Kinne)

Uniform depth \(d\) **circuits** with **majority gates** for matrix **permanent** have size at least \(S(n)\), for \(S(n)\) that satisfy \(S^{(O(d))}(n) < 2^n\).

- “Hard” problem \(H\) in EXP requires size \(2^n\) (**uniform**) circuits
- Assume depth \(d\), size \(S(n)\) circuits for permanent
 - \(\Rightarrow\) size \(\approx S(2^n)\), depth \(d\) circuit \(C\) for \(H\)
- Bottom majority gates in \(C\) \(\Rightarrow\)
 - permanent question of size \(\approx \log(S(2^n)) + n\)
 - size \(S_1 = S(\log(S(2^n)) + n)\) circuit
- Next level of majority gates \(\Rightarrow\)
 - permanent question of size \(\approx \log(S(2^n)) + n + S_1\)
 - ...
To Conclude...