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Abstract

There is an web site [1] that lists the 5000 largest integers that are provably (as opposed to probably) prime.
Each of these primes has a special form, in that each is very close to a large power of small integer, and this special
form is essential to the proof of primality. The best known examples are the Mersenne primes, which have the form
2n − 1, and in fact the ten largest known primes are all Mersenne primes. For integers that cannot be expressed in
one of these special forms, proving primality is much more difficult. In this note, we outline some basic methods
that can be used to prove primality when no special form is assumed.

1 Introduction

We present a series of four related methods for proving that an integer n is prime. Each method works by factoring
n − 1 into smaller known primes. The four methods are distinguished by the extent to which one is able to factor
n− 1. The four methods are designed for the following situations.

Method 1: used if n− 1 can be completely factored into small primes,

Method 2: used if n− 1 can be completely factored into small primes and probable primes,

Method 3: used if n− 1 can be factored into two factors, AB such that the prime factorization of A is known
and A ≥ B, and

Method 4: used if n− 1 can be factored into two factors, AB such that the prime factorization of A is known
and A2 ≥ B > A.

Before we begin detailing the methods, some background will be necessary.

Many of the elementary methods for factoring and primality proving make use of a theorem of Leonhard Euler. Euler’s
theorem is stated in terms of his totient function, φ, which is defined as follows.

Definition 1 Let n be a positive integer, then φ(n) is the number of integers k such that 1 ≤ k < n and gcd(k, n) = 1.

There are a number of different proofs of this theorem. Most of them require some background in Number Theory or
Abstract Algebra, so no proof is given here. However, the reader is encouraged to verify the theorem for a few specific
numbers.

Theorem 1 Let n be a positive integer, and a 6≡ 0 mod n, then aφ(n) ≡ 1 mod n.

Note that if n is a prime, φ(n) = n− 1 and in this special case the Theorem was first proved by Fermat and is known
as Fermat’s Little Theorem.

Each of the methods discussed can be used to establish the primality of a (large) integer n by reducing the issue to the
primality of a set of smaller integers. The idea is that the verification of the primality of any of the smaller integers
can be done easily. So we need some guidelines as to what constitutes a small integer.

There are 78, 498 primes less than one million (106), so using a list of such primes one can quickly check whether or
not an integer less than one trillion (1012) is prime. If one were a little more ambitious, once could maintain a list of
the 664, 579 primes less than 107 and use it to check the primality of integers less than 1014.



2 The Basic Method: Lucas’ Theorem

The method is based on the following theorem, due to Édouard Lucas (who also invented the Towers of Hanoi puzzle).

Theorem 2 If a and n > 1 are integers and

an−1 ≡ 1 mod n

but for every prime q that divides n− 1

a(n−1)/q 6≡ 1 mod n

then n is prime.

To apply the theorem and prove that a given integer n is prime, there are essentially two steps. First, the prime
factorization of n− 1 is needed. Second, one must find an integer a that satisfies the congruences. In general, the first
will be considerably more difficult than the second step.

Example 0. As a simple illustration on the use of this theorem, we apply it to a trivial example. Our goal is to prove
that 11 is prime. So, referring to the statement of the theorem, we have n = 11 and the prime factors of n − 1 = 10
are 2 and 5. If we can find an integer a (1 ≤ a < 11) such that the following three statements hold, then we will have
proved that 11 is prime (assuming that we know 2 and 5 to be prime).

a10 ≡ 1 mod 11

a10/2 = a5 6≡ 1 mod 11

a10/5 = a2 6≡ 1 mod 11

A little computation reveals that a = 2 works, since a10 = 1024 = 1 + 93 × 11 ≡ 1 mod 11, 22 = 4 6≡ 1 mod 11 and
25 = 32 6≡ 1 mod 11. Therefore, 11 is prime. Let’s try a more challenging example.

Example 1. Using either the program gp or the extended precision arithmetic package gmp, one can check that the
following 20-digit integer is a probable prime.

n = 2221222211221112111122111

To prove that this integer is prime using Lucas’ theorem, we need to factor n− 1. This example is small enough that
one can find the prime factorization by trial division.

n− 1 = 2× 32 × 5× 7× 11× 13× 37× 101× 271× 601× 967× 4231× 9901

In this case, we were lucky 1 since all of the prime factors of n− 1 are relatively small.

To prove the primality of n, we need to find a value of a that meets the conditions of the theorem. It turns out that
a = 12 is the smallest value that will work. Using an extended precision calculator (very carefully) one can verify the
following congruence.

122221222211221112111122110 ≡ 1 mod 2221222211221112111122111

Then for each prime factor q in the prime factorization of n − 1 given above, one checks that 12(n−1)/q 6≡ 1 mod n.
The results of these computations are given in the following table.

1It took nearly 10,000 attempts to get this lucky.



q 2
(n− 1)/q 1110611105610556055561055

12(n−1)/q mod n 2221222211221112111122110
q 3

(n− 1)/q 740407403740370703707370
12(n−1)/q mod n 2182949738321903361431311

q 5
(n− 1)/q 444244442244222422224422

12(n−1)/q mod n 1961365065792481737175891
q 7

(n− 1)/q 317317458745873158731730
12(n−1)/q mod n 216088418235841707706948

q 11
(n− 1)/q 201929291929192010102010

12(n−1)/q mod n 1149404640467046734510464
q 13

(n− 1)/q 170863247017008623932470
12(n−1)/q mod n 1431748596055399543313771

q 37
(n− 1)/q 60033032735705732733030

12(n−1)/q mod n 2094226622050481435799357
q 101

(n− 1)/q 21992299121001110011110
12(n−1)/q mod n 1220581396132231768209210

q 271
(n− 1)/q 8196391923325136941410

12(n−1)/q mod n 1964432231292546731390102
q 601

(n− 1)/q 3695877223329637456110
12(n−1)/q mod n 370367282447852485652624

q 967
(n− 1)/q 2297024003331036309330

12(n−1)/q mod n 1688005164805213242843917
q 4231

(n− 1)/q 524987523332808345810
12(n−1)/q mod n 1066399149682614490143275

q 9901
(n− 1)/q 224343218990113333110

12(n−1)/q mod n 384146268175804518291995

3 Recursive Application of the Basic Method

In the examples above, we were able to find a complete factorization of n− 1. This is not usually quite so easy. After
factoring out the small prime factors, we might be left with a large factor whose primality is uncertain. In this case,
one can apply the method recursively to the remaining factor. After the primality of the factor is established, one can
complete the proof of the primality of the original integer.

Example 2. Let’s prove that the 40-digit integer

n = 2112221211112211121112212121122221222111

is prime. A search through small primes gives the following, perhaps incomplete, factorization.

n− 1 = 2× 5× 285355717× 740206375859016387294673378183

This leaves us with a new problem - an uncertainly about the primality of the last factor. However, leaving that aside
for the moment, we find that using a = 37 is the smallest value that satisfies the conditions of the theorem.



q 2
(n− 1)/q 1056110605556105560556106060561110611055

37(n−1)/q mod n 2112221211112211121112212121122221222110
q 5

(n− 1)/q 422444242222442224222442424224444244422
37(n−1)/q mod n 1209999676948245787739440995657254072740

q 285355717
(n− 1)/q 7402063758590163872946733781830

37(n−1)/q mod n 1245810415581446524363882348882550750038
q 740206375859016387294673378183

(n− 1)/q 2853557170
37(n−1)/q mod n 868884182377049806585573408165439359793

It remains to prove that the final factor is prime. Verifying this requires another application of the method. We need
to prove that

n2 = 740206375859016387294673378183

is prime. We find that n2 − 1 factors as follows.

n2 − 1 = 2× 3× 7× 10613× 13577× 2645479× 6234737× 7415477

Since (by our working definition) these are all small primes, we need only find a value of a that meets the requirement
of the theorem. It happens that a = 13 is the smallest value that works, since

13n2−1 ≡ 1 mod n2

and no smaller power of 13 is congruent to one modulo n2. The other details are given in the table below.

q 2
(n− 1)/q 370103187929508193647336689091

13(n−1)/q mod n 740206375859016387294673378182
q 3

(n− 1)/q 246735458619672129098224459394
13(n−1)/q mod n 15525278755645667899909851854

q 7
(n− 1)/q 105743767979859483899239054026

13(n−1)/q mod n 283075596468830260344585016817
q 10613

(n− 1)/q 69745253543674398124439214
13(n−1)/q mod n 37411016732304939115468925392

q 13577
(n− 1)/q 54519140889667554488817366

13(n−1)/q mod n 2352151787472608168741011521
q 2645479

(n− 1)/q 279800510931674901707658
13(n−1)/q mod n 7117520496080548503983024733

q 6234737
(n− 1)/q 118722951081820514208486

13(n−1)/q mod n 300489223308558754989268633781
q 7415477

(n− 1)/q 99819118292594850917166
13(n−1)/q mod n 211673824333939603919414981909

This shows that n2 is prime, which in turn implies that all the factors given for the original n are prime, thereby
completing the proof that n itself is prime.

4 A More Powerful Method: Pocklington’s Theorem

Recursive application of the basic method is not always enough. It might happen that we are left with a large factor
that is not prime, as verified by a compositeness test such as Miller-Rabin, but which we are unable to factor. The
next two methods enable us to prove primality with only a partial factorization of n− 1.



Theorem 3 Let a and n > 1 be integers. Suppose that n−1 = A×B, such that A ≥ B and that the prime factorization
of A is known. If an−1 ≡ 1 mod n and gcd(a(n−1)/q − 1, n) = 1 for each prime factor q of A, then n is prime.

Example 3. This method will be used to prove that the 60-digit integer

n = 112221212122221122121112121221212221212122121122122111211121

is prime. First we find that n− 1 factors as follows.

n− 1 = 2× 3× 5× 163243× 5614681× 6814061× 353973481× n0
where

n0 = 7833638954819589418361831173

and just to illustrate the method, let us suppose that we are unable to determine whether or not n0 is prime (actually
you should be able to make this determination). Since n20 < n, we can apply the theorem, and find that when a = 7

gcd(7(n−1)/q − 1, n) = 1

for each of the first seven prime divisors of n. The table below gives the values needed to verify the proof.

q 2
(n− 1)/q 56110606061110561060556060610606110606061060561061055605560

7(n−1)/q − 1 mod n 112221212122221122121112121221212221212122121122122111211120
q 3

(n− 1)/q 37407070707407040707037373740404073737374040374040703737040
7(n−1)/q − 1 mod n 90457272601162796268286480776761192315917215136222852362352

q 5
(n− 1)/q 22444242424444224424222424244242444242424424224424422242224

7(n−1)/q − 1 mod n 75880508830123651060716013069647827684537715390261894588328
q 163243

(n− 1)/q 687448846947318550388758606624554934742207145924309840
7(n−1)/q − 1 mod n 80362615596772639146556201774041384278973201685664135887630

q 5614681
(n− 1)/q 19987103830515237129431239498951449104966447982017520

7(n−1)/q − 1 mod n 106978595234357601649128941211421844687408025262939575634620
q 6814061

(n− 1)/q 16469064794433322818963921987374668529107990245775920
7(n−1)/q − 1 mod n 82061424394151396761879200159705839582978171984410568966517

q 353973481
(n− 1)/q 317032823490585505531450027526814137842495949921520

7(n−1)/q − 1 mod n 12001077333598453370952044517448952946576613995608612853727

5 An Even More Powerful Method: Brillhart, Lehmer and Selfridge

As the integers under consideration become larger, factoring n− 1 becomes more difficult. Our final method requires
that the portion of n− 1 that can be factored into primes is at least as great as the cube root of n.

Theorem 4 Let n be an integer, where n−1 = A×B and where the complete factorization of A is known, and satisfy
the inequality n1/3 ≤ A < n1/2. Let a be an integer such that an−1 ≡ 1 mod n and suppose for each prime factor q of
A we have gcd(a(n−1)/q − 1, n) = 1. Let c2A

2 + c1A+ 1 be the base A represenation of n. Then n is prime if and only
if c21 − 4c2 is not a square.

Example 4. We apply this theorem to prove that the 80-digit integer

21211212112211112112212211111212212211221221211212222112111222212212121211112211

is prime. A little effort reveals the following factorization of n− 1.

n− 1 = 2× 3× 5× 649981× 60178589057× 1036760601625393× n0



where
n0 = 5811681824139174850454007962163369229863706849.

The product of all factors of n− 1, except for n0, is

A =
n− 1

n0
= 3649754538197368127316936115774290

and so
A2 = 13320708189092283880702052883287210926654542045591754154566225004100.

Since A2 > n0, we have A > n1/3, and one can check that A < n1/2. So the requirements of the theorem are met.
Using a value of a = 3, we find that the condition

an−1 ≡ 1 mod n

and the condition
a(n−1)/q 6≡ 1 mod n

are satisfied for q ∈ {2, 3, 5, 649981, 60178589057, 1036760601625393}. The verification of these conditions, and the
verification that 1036760601625393 is prime, are left as exercises. It remains to show that the final condition of the
theorem is satisfied. In the base A representation of n we find that

c2 = 1592348680799

and
c1 = 432257427115662839619413922849139.

The reader should check that
n = c2A

2 + c1A+ 1

and that
c21 − 4c2 = 186846483296652571920180935546316933660096378710601114977958318125

and is not a square, completing the proof that n is prime.
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