Difference between revisions of "Truth table proofs"
Line 2: | Line 2: | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |||
|- | |- | ||
! A !! B !! A ∧ B | ! A !! B !! A ∧ B | ||
Line 13: | Line 12: | ||
|- | |- | ||
| true || true || true | | true || true || true | ||
+ | |} | ||
+ | |||
+ | A truth table can also be used to prove a logical identity. The following proves DeMorgan's law that ¬ (A ∧ B) is equivalent to (¬ A) ∨ (¬ B). Notice that the truth values for these (the last two columns in the table) are always the same. | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | ! A !! B !! A ∧ B !! ¬ (A ∧ B) !! (¬ A) ∨ (¬ B) | ||
+ | |- | ||
+ | | false || false || false || true || true | ||
+ | |- | ||
+ | | false || true || false || true || true | ||
+ | |- | ||
+ | | true || false || false || true || true | ||
+ | |- | ||
+ | | true || true || true || false || false | ||
|} | |} |
Revision as of 14:49, 29 August 2022
Truth tables are used to show all possible values that a given logical expression might take. For example, the following gives the definition of the logical AND operation.
A | B | A ∧ B |
---|---|---|
false | false | false |
false | true | false |
true | false | false |
true | true | true |
A truth table can also be used to prove a logical identity. The following proves DeMorgan's law that ¬ (A ∧ B) is equivalent to (¬ A) ∨ (¬ B). Notice that the truth values for these (the last two columns in the table) are always the same.
A | B | A ∧ B | ¬ (A ∧ B) | (¬ A) ∨ (¬ B) |
---|---|---|---|---|
false | false | false | true | true |
false | true | false | true | true |
true | false | false | true | true |
true | true | true | false | false |