Definite Integral Approximator

Gage Golish

Fall 2019

Contents
I_Overviewl 1
2 Highlights| 1
2.1 Extendable Equation Parser| 00000000 1
2.2 Flexible Mesh Sizel 2
[2.3 N-Dimensional Integrals| o 2
3 Usage| 2
A Input|. . .. 2
[3.1.1 Supported Operators| 2
[3.1.2 Supported Functions] 2
B2 Buildl. o 2
3.3 Command Line Arguments| 3
3.4 Default Behavior] 3
[3.5 run tests.shl. 3

1 Overview

A program for approximating definite integrals, written for MATH 613 - Applied Linear Algebra
course at Indiana State University. The program uses |[Simpson’s one-third rule for the approxima-
tion:

b
/ (@) de ~ SE (f(zo) + 4f (21) + 2 (x2) + 4f (23) + 2f (2a) + - +4f (@) + f(20)) -

This program uses the extended form of Simpson’s rule for approximating n-dimensional integrals.

2 Highlights

The following are some implementation details that are of note.

2.1 Extendable Equation Parser

The program contains a custom tokenizer (scanner.c) and parser (parser.c) that converts an infix
input equation to an abstract syntax tree (ast.c). Representing the equation as an AST allows for
computing the equation on many values efficiently. It is also a simple matter to extend the scanner
and parser to handle new operators and functions.

https://en.wikipedia.org/wiki/Simpson%27s_rule

2.2 Flexible Mesh Size

The program uses an adaptive approach for choosing the mesh size. Starting at a low value, the
mesh size is doubled until the approximation converges to within four decimal places (simpson.c).
The mesh size is part of the output of the program.

2.3 N-Dimensional Integrals

The program was built from the ground up to accomadate n-dimensional integrals. The program
accepts as input the integral dimension and then a list of integral specifications that consist of the
start and end of the integral, as well as the variable the integral should be performed on (args.c,
simpson.c). See the Usage section for more details.

3 Usage

3.1 Input

The program accepts as input an infix equation that can contain numbers, functions, one-character
variables, and operators.

3.1.1 Supported Operators
e + (addition)
e - (subtraction)
e * (multiplication)
~ (exponentiation)
e ((open parenthesis)

(
(
o / (division)
(
(
(

e) (closing paranthesis)
3.1.2 Supported Functions
e sin (sine)

e cos (cosine)

tan (tangent)
e 1n (natrual logarithm)

e sqgrt (square root)

3.2 Build

To build the project, run the following command in the root directory of the project:
make integrate
This command produces the target executable integrate.

3.3 Command Line Arguments

e -n <dimension>: Specifies the integral dimension as <dimension>.

e -p <params-list>: Specifies the list of integral specifications. A colon (:) separated list of
comma (,) separated specifications e.g. 0,3,x:0,3,y specifies a double integral in which the
variable x (the outer integral) is integrates over the range |0, 3] and variable y (the inner
integral) is integrated over the range [0, 3].

e -e¢ <equation>: Specifies the equation to integrate.

3.4 Default Behavior

If no command line arguments are given, the program will expect the user to first input the integral
specification, then the equation. One or the other may be passed as command line arguments, while
the other is read from stdin. For example,

./integrate
0 3.14 x
sin(x)

is the stdin way of specifying foﬂ sin(x)dz. The command line way would be:

./integrate -n 1 -p 0,3.14,x’ -e ‘sin(x)’

3.5 run_tests.sh

Run the interactive program run_tests.sh to perform some test examples using the program. The
test examples are as follows:

2
o/ sin(z)dx
0
2
o/ cos(z)dx
0
10
o/ sin(z? + 1)dx
0
20
o/ sin(z? + 1)dx

10
1 g2
° / 22y + xydady
-1J1

	Overview
	Highlights
	Extendable Equation Parser
	Flexible Mesh Size
	N-Dimensional Integrals

	Usage
	Input
	Supported Operators
	Supported Functions

	Build
	Command Line Arguments
	Default Behavior
	run_tests.sh

