
NEATpy: A Python Package Implementing
NEAT with a C++ Back End

Gage Golish
Department of Mathematics and Computer Science

Indiana State University

Spring 2019

Contents

1 Project Overview 1
1.1 Introduction . 1
1.2 Genetic Algorithms . 2

1.2.1 Mutations . 2
1.2.2 Crossover . 3
1.2.3 Selection . 3

1.3 Neural Networks . 4
1.3.1 Topology . 4
1.3.2 Activation . 4

1.4 Python Module . 4
1.4.1 Wrapping Back End . 5
1.4.2 Child Classes . 5
1.4.3 Visualization . 5

2 Project Organization 5
2.1 Tree View . 5
2.2 Files . 6

3 Tests and Results 8
3.1 XOR Test . 8

1 Project Overview

1.1 Introduction

NEATpy is an original implementation of NEAT (NeuroEvolution of Augmenting Topologies)
written in C++, and wrapped into a user friendly Python 3 package. The training of neural

NEATpy: A Python Package Implementing NEAT with a C++ Back End 2

networks via genetic algorithms is commonly referred to as neuroevolution. Many strategies
for achieving this exist. The simplest form of neuroevolution is treating the weights of a
group of neural networks, whose topologies have already been decided, as the population in
a genetic algorithms experiment. NEAT, developed by Kenneth O. Stanley at the University
of Texas in 2002, takes a slightly more complex approach in which the topologies of the
neural networks are encoded and modified by genetic algorithms as well. The back end of
this project was implemented entirely based on Stanley’s original paper.

The code for this project can be divided into three categories: genetic algorithms, neural
networks, and python module. The code that falls into the former two categories is part of
the C++ back end, and deals with implementing the NEAT algorithms. The latter category
of code deals with wrapping the back end in order for it to be used as a Python 3 package,
and with extending the functionality and usability of the package for end users. Please note
that this project is still in its infancy, and will continue to undergo radical changes in the
near future.

1.2 Genetic Algorithms

Before genetic algorithms can be used to evolve a neural network’s weights as well as its
topology, a suitable encoding scheme must be chosen to represent a neural network. Just as
in NEAT, in this project a neural network is represented by a list of neurons and a list of
connections. In the context of genetic algorithms, we will refer to an encoded neural network
as a genome, and its individual neurons and connections will be referred to as genes. This
simple encoding scheme, along with some other innovations made in NEAT 1, enables genetic
algorithms such as mutation, crossover, and selection to be efficiently applied to a neural
network.

1.2.1 Mutations

There are two main types of mutations that are performed on a genome. The first type is
connection gene mutations. A connection gene can undergo multiple different mutations:

• Connection Weight Perturbation: A connection can have its weight perturbed,
which simply means that some random noise is added to the weight. Currently, a
weight, wi, is perturbed using the equation wi+1 = wi + δ, where δ is a random value
from a normal probability distribution. Other possible perturbation algorithms are
planned to be tested.

• Connection Weight Replace: A connection gene will have its weight replaced by a
new random weight.

• Connection Weight Toggle: A connection gene contains a flag that determines
whether the gene is enabled or not. When a gene is disabled, it is not used when
activating the genome. This mutation switches a gene’s disabled flag from true to
false, or vice versa.

1Pun intended.

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

NEATpy: A Python Package Implementing NEAT with a C++ Back End 3

Another connection gene mutation that is planned, but not currently implemented, is con-
nection gene removal. A random gene is removed from the genome, and the nodes in the
genome are adjusted accordingly.

The other type of mutation is topological mutation. These mutations differ in that they
change the topology of the genome. These changes are marked by historical markings referred
to as innovation numbers. Each gene in the genome is marked with an innovation number.
Topological mutations include:

• Add Connection: A brand new connection gene is added between two node genes
in a genome. The connection gene is assigned an innovation number based on the
innovation numbers of the two node genes it resides between.

• Add Node: A new node gene is added to the genome. This is achieved by choosing
a random connection gene 2, and splitting it into two connection genes, each between
one of the old nodes and the new node. The node is assigned an innovation number
based on the two nodes it has been placed between. Note that the old connection is
only disabled, not removed. It may be enabled again later due to a connection weight
toggle mutation.

1.2.2 Crossover

The innovation numbers in the previous section are essential to the success of the crossover
algorithm used in this project. A global hash map is maintained for connection innovation
numbers, as well as for node innovation numbers. A new innovation number is only assigned
if the innovation in question has not been seen before in the history of the current experiment.
The current crossover scheme has the child inherit all of the node genes from the best fit
parent. The connection genes from each parent are lined up, and if the parents share an
innovation, it is randomly chosen from the parents. Excess and disjoint genes 3 are inherited
only from the best fit parent. There are plans to add other types of crossover, in which genes
are inherited from both parents.

1.2.3 Selection

Selection in this project is achieved via speciation. Each node is grouped into species using
the distance function d(g1, g2) = c1E+c2D+c3W , where E and D are the numbers of excess
and disjoint genes between g1 and g2 respectively, and W is the mean of the differences of
the weights of the matching connection genes between g1 and g2. c1, c2, and c3 are constants
that allow preference to placed on any one of the measurements. If the distance between
two genomes is under a set threshold value the genomes are grouped into the same species.

Each species is represented by a random genome within it. Before selection takes place,
the population is sorted into species using these representatives and the distance function

2There is currently a bug in which a connection can be split twice, resulting in duplicate connection genes
in the genome. This will be fixed in a future release.

3Disjoint genes are those that have innovation numbers less than that of the highest innovation number
in the partner genome. Excess genes are those that have innovation numbers higher than that of the highest
innovation number in the partner genome.

NEATpy: A Python Package Implementing NEAT with a C++ Back End 4

described above 4. Each species is assigned a portion of the next population based on its
collective fitness. Finally, this portion is filled by choosing one genome at a time via a
tournament, and subsequently applying mutation and crossover algorithms to produce an
offspring. Note that a genome can only be crossed over with another genome from the same
species. Also, the best performing member of a species with more than five genomes is
copied to the next generation without change. If a species has not increased its fitness after
a certain number of generations, it becomes stagnant and is no longer allowed to reproduce,
causing it to die out.

1.3 Neural Networks

The ultimate goal of running an experiment in this project is to produce a suitable neural
network for the problem at hand. Each neural network begins as a simple fully connected
feed forward neural network, containing a bias node and no hidden nodes. As an experiment
progresses, the networks evolve a much more complicated structure.

1.3.1 Topology

The neural networks produced by the genetic algorithms described in the last section evolve
a topology that is inconsistent with a traditional neural network topology. These networks
are not organized in layers. For instance, an input node can have connections to multiple
hidden nodes as well as a direct connection to an output node. This is an advantage, as such
free-form neural networks may not be thought of when one is designing a neural network
topology. It is also possible for recurrent connections to be evolved. The only restriction
placed on a network’s topology is that a connection’s input must not come from an output
node, and a connection’s output may not be fed to an input node.

1.3.2 Activation

With such interesting topologies, these networks are not activated via the common feed
forward algorithm. Instead, a depth first search is launched from each output node, propa-
gating backward through the network until an input or bias node is reached. Each hidden
and output node’s value is passed through the activation function a(x) = 1

1+e−4.9x , a slightly
steepened sigmoid curve. In order to handle the recurrent connections, each network is
activated multiple times before returning the output.

1.4 Python Module

NEATpy is intended to be used as a Python 3 module with a simple set of classes and
function calls. This will allow the user to integrate NEATpy into their project with relative
ease, and to use NEATpy in conjunction with other powerful Python 3 machine learning
packages such as numpy and scikit-learn.

4In a future release, a specified portion of each species will be eliminated via stochastic universal sampling
at this point.

NEATpy: A Python Package Implementing NEAT with a C++ Back End 5

1.4.1 Wrapping Back End

The back end is wrapped into a Python 3 module using Swig, a wrapper and interface
generator. Only code that is essential to the end user is wrapped for use in the module.
Currently the only class available to the Python 3 user is NEAT and its associated methods.
Genome, Node, Connection, Species, and NEAT hyper parameters will be available in a
future release.

1.4.2 Child Classes

Each class in the module generated by Swig will be hidden from the end user. Instead, child
classes will be created in order to hide all interface code, and to extend the abilities of the
parent classes. This will allow a more powerful layer of functionality to be laid on top of the
relatively simple back end.

1.4.3 Visualization

Another important piece of functionality added to the Python 3 module is the ability to
visualize a neural network in the population. This is accomplished via the incorporation of
existing Python 3 modules that excel at visualizing networks. Currently, the only visualiza-
tion function implemented stores the image generated in PNG format.

2 Project Organization

This section will describe the organization of the project, as well as the purpose of each file.
Documentation will not be included for how to use the project. This will be added in the
near future.

2.1 Tree View

MyNEAT/

|-- neatpy

| |-- __init__.py

| |-- neat_backend

| | |-- include

| | | |-- Connection.h

| | | |-- Genome.h

| | | |-- InnovationMap.h

| | | |-- NEAT.h

| | | |-- Node.h

| | | |-- options.h

| | | |-- Species.h

| | | `-- utilities.h

| | |-- __init__.py

| | |-- Makefile

NEATpy: A Python Package Implementing NEAT with a C++ Back End 6

| | |-- neat_backend.i

| | |-- setup.py

| | |-- src

| | | |-- Connection.cpp

| | | |-- Genome.cpp

| | | |-- InnovationMap.cpp

| | | |-- NEAT.cpp

| | | |-- Node.cpp

| | | |-- options.cpp

| | | |-- Species.cpp

| | | `-- utilities.cpp

| | `-- tests

| | |-- and.cpp

| | |-- avg_xor.cpp

| | |-- or.cpp

| | `-- xor.cpp

| |-- NEAT.py

| `-- visualize.py

|-- test-xor.py

|-- visualize_xor.py

`-- xor.py

2.2 Files

• C++ Backend:

– Connection.h/cpp: Contains the Connection class definition. This class rep-
resents a connection gene.

– Genome.h/cpp: Contains the Genome class definition. This class represents a
genome, which has references to both connection genes and node genes in order
to encode a neural network.

– InnovationMap.h/cpp: Contains the InnovationMap class definition. This
class is used to keep track of both node gene and connection gene innovation
numbers throughout the duration of the experiment. The hash map enclosed
requires the key to be a pair of integers, so the hash function from the boost
library is used.

– NEAT.h/cpp: Contains the NEAT class. This class is the main class that is
interacted with by the end user. It contains the population of genomes, the
innovation number hash maps, as well as functions for repopulation and activating
networks.

– Node.h/cpp: Contains the Node class definition. Represents a node gene. Also
contains a type definition for the type of a node.

– options.h/cpp: These files contain global variables wrapped in the neat options

namespace that serve as the hyper parameters for the current experiment. Cur-

NEATpy: A Python Package Implementing NEAT with a C++ Back End 7

rently, it is impossible to set these hyper parameters when using the Python 3
package. The plan is to pass a dictionary of options to the NEAT class constructor.

– Species.h/cpp: Contains the Species class definition. Represents a species
during the speciation process. The primary reason for creating a separate class
for a species instead of simply keeping track of a vector is to facilitate a simple
way to keep track of stagnation.

– utilities.h/cpp: Contains several namespaces, with functions that are meant to
be used internally by the C++ back end. These functions are not intended to
ever be available in the Python 3 package.

– tests/*.cpp: These files contains tests that were used during development to
track the progress of the project. Each trains a network to solve a simple logic
function.

– Makefile, neat backend.i, setup.py: These files are used to build the back
end module. neat backend.i is a Swig configuration file that tells Swig what to
wrap. setup.py is used to compile the project after Swig is called. The make file
build the project when make is run.

• Python Package:

– NEAT.py: Contains the NEAT class that will be used when using the package. It
acts as an interface between normal Python 3 code and the Swig generated NEAT

class in the back end module. It also implements a few new methods that are not
in the original NEAT class.

– visualize.py: Contains a function for generating a visual representation of a
network when passed a Genome object. The image is stored as a PNG file.

– init .py: Decides what gets imported when neatpy is imported.

• Examples:

– xor.py: An example of using neatpy in conjunction with numpy to evolve a
network that solves the XOR problem.

– visualize xor.py: Also evolves a network that can solve XOR, but visualizes the
solution space of the best fit genome during each generation.

– test-xor.py: Calculates the average number of generations required to solve XOR
over n epochs.

NEATpy: A Python Package Implementing NEAT with a C++ Back End 8

3 Tests and Results

3.1 XOR Test

NEATpy has only been successfully tested on the XOR problem so far. Over 100 epochs,
it found a solution in 5368 generations on average. Compared to the results of the original
NEAT paper, this is a very poor score. Some examples of networks found are shown in
Figure 1.

Figure 1: Three solutions found when running the XOR test. These networks have only one
or two hidden nodes, making them good XOR solutions. Most networks found in the tests,
however, were much more complex. This suggests some changes need to be made to the
evolutionary algorithms.

	Project Overview
	Introduction
	Genetic Algorithms
	Mutations
	Crossover
	Selection

	Neural Networks
	Topology
	Activation

	Python Module
	Wrapping Back End
	Child Classes
	Visualization

	Project Organization
	Tree View
	Files

	Tests and Results
	XOR Test

