
IMAGE PROCESSING:PATTERN

RECOGNITION

SUJANA GURRAM
Indiana State University

Terre Haute IN, USA

December 14, 2011

Abstract

This project is to find pattern in a text file using BOYER-MOORE
ALGORITHM(String Searching Algorithm).

Image Processing describes the qualities and measurements of images of objects.
Pattern Recognition is concerned with description and classification of entities.

1 Introduction

In String matching pattern recognition the original problem is so easy to state
that even a child could undersatnd it. Two strings of characters are given: one
is called Text and the other is Pattern. Here the basic problem is to find all
occurances of the pattern in the Text. And usually the Text is longer than
Pattern.

Figure 1: Search

1

Searching for a simple string(or)pattern in a text file is one of the stan-
dard problem in the old days of computing. Boyer-Moore Algorithm promul-
gated in 1977 was the major algorithmic breakthrough which is a new exact
pattern matching algorithm that had excellent, distinguished logic to existing
versions.This Boyer-Moore Algorithm performs character comparision in reverse
order to the Pattern being searched for in the Text file. And if any mismatch
occurs or found it had a method that doesn’t require the full Pattern to search.

However Boyer-Moore algorithm contains three inventive ideas which or not
contained in algorithms like for example Naive String Searching Algorithm:

1. Right to Left shift scan,

2. Bad Character Shift rule,

3. Good Suffix shift rule.

And we do have a Two-Dimensional pattern matching algorithm indepen-
dently designed by Bird and Baker for a two-dimensional pattern matching
problem that combines the use of the Aho-Corasick algorithm and KMP algo-
rithm.

2 History

The distinct way to solve the string matching problem is to slide pattern along
the text and comparing it with corresponding part of the text. Which is called
Brute-Force Algorithm, which take O(nm) time. where n is the text and m is
length of pattern. And by speeding up the Brute-Force Algorithm steps faster
algorithms are obtained:

1. Comparision step which leads to Karp-Rabin Algorithm.

2. Sliding step by pre-processing the pattern, such as Knuth-morris-Pratt
Algorithm.

3. Linear time versions which leads to Boyer-Moore Algorithm.

In the early 1956 string pattern recognition problems were formulated in terms
of finite automata for long time. Solutions provided by applying these tech-
niques are complicated and had high running time(designed by Kleene). Even
Ukkonen’s 1995-Algorithm for constructing suffix trees used finite automata.

However Gusfield showed, many of those algorithms may be reformulated
without finite automate terminology. In 1970 Morris and Pratt came up with
the first linear time algorithm to solve the problem. It skipped comparisions by

2

Figure 2: Timeline of the history of some string matching algorithms

studying internal structure of pattern. Seven years later, in 1977, Knuth, Mor-
ris and Pratt enhanced that algorithm. Although they achieved the same time
complexity, their algorithm works much better in practice. A few years later,
in 1991, Colussi pyt forward a enhancement of the Knuth-Morris-pratt algo-
rithm that performs fewer comparisions in the worst case even. In 1977 Boyer
and Moore proposed Quadratic Algorithm which is very much used in prac-
tice because of its good performnace. And even several enhancements followed
Boyer-Moore Algorithm. The Galil Algorithm is an enhancement for periodic
patterns that runs in linear time.

In 1987 Karp and Rabin published an algorithm that performs the compar-
ision step by computing fingerprints of the pattern and the text, and if the set
up is good its average case is like linear. In 1993 simon presented an economical
implementation of finite automata running in linear time and he observed that
only few edges are relevant in the automation. And a year later Crochemore
and Rytter came up with a linear-time algorithm with a better performance
thanthat of the simon algorithm. And for processing the text instead of the
pattern, the first algorithm was designed by Weiner in 1973. Three years later
McCreight gave a different algorithm, which reduced the amount of space used.
And then Ukkonen gave a nice algorithm to build suffix trees.

3

3 Why Boyer-Moore and Not Other String Search
Algorithms?

String matching problem idea is to find an occurance of a pattern in the text
or to decide that none exists. For this problem of pattern matching the two
best known algorithms are Knuth-Morris-Pratt Algorithm and Boyer-Moore
Algorithm. Firstly to discuss about Knuth-Morris-Pratt Algorithm, KMP scans
”words” in the forward direction and if we are scanning forward with KMP, and
spotted the non-word charater, then we can only skip forward as far as we
matched. So it is mostly and often considered impractical.If we consider Boyer-
Moore Algorithm, BM scans in the backward direction. scanning backward
with BM is faster because if we spot a character that isn’t in the word then
we can skip many spaces forward. Best-case, we may only need to compare the
last character every time, and skip forward the full length word. This makes
Boyer-Moore Algorithm as a choice in practical applications.

BM can be much faster than KMP, but only on certain inputs that allow
many caharcters to be skipped. So BM can be faster or slower than KMP
depending on the inp ut, while KMP is perfectly reliable O(n).

4 Two Dimensional Pattern Matching

The first worst-case linear time for 2D searching is due to Bird and, indepen-
dently, to baker. It uses Aho-Corasick’s multi-string searching algorithm as the
main component, achieving O(n2+m2) searching time worst and average case.
This algorithm needs O(n+m2) extra space. And the basic idea is to run a
finite automaton that searches for the m strings that form the pattern in every
row, while at same time running the KMP string searching algorithm on every
column, searching for the row indices of the pattern. And the probabilistic 2D
pattern matching algorithms are proposed by Karp and rabin. However, since
the constant in the running time O(n2) is too large, these algorithms cannot be
used in practice. In this case extra storage is either O(n) or O(m2).

4

Figure 3: Simple Two Dimensional Searching example

5 Problem Statement

Boyer-Moore String Searching Algorithm avoids lot of needless comparisions
by significantly shifting pattern relative to text. And Boyer-Moore Algorithm
works fast when the alphabet(or)string is moderatley sized and the pattern is
relatively long. And in all the algorithms we have seen so far preprecesses the
textfile in which we had to find the pattern, because of which the process of being
able to match the textfile with pattern became moderately slow resulting into
inefficient running time. To overcome this we tried to implement Boyer-Moore
String Search Algorithm in which it preprocesses the pattern itself avoiding
excessive comparisions by acquiring the facts from previous fruitless attempts
which yeilds efficient running time.

6 Major Reason For Boyer-Moore To Be Quick
And Efficient

One of the main reasons for the high efficiency of the fast pattern matching al-
gorithm of Boyer and Moore is PREPROCESSING. The Boyer-Moore’s pattern
matching algorithm uses two preprocessing algorithms:one based on string and
the other on single characters only. In 1981 correctness of the single-character
preprocessing algorithm has been established and mechanically verified by Boyer
and Moore. String-preprocessing algorithm is more complicated and some errors
were found by different authors.In this algorithm a minor error was found in
1999 and was corrected. And to make sure that corrected algorithm doesn’t lead
to any new errors a correctness proof for the corrected algorithm was developed.

Boyer-Moore on an avg is close to O(n/m) where pattern is of size m and
text is of size n and KMP is O(n). This is faster because it compares words
from right to left , and as soon as it finds a letter in text which is not present in
pattern , search moves m places ahead . so for large files , it should be expected
that a lot of such moves would be there so a lot of characters of text wont be
accessed even once unlike KMP where each letter is accessed atleast once.

5

7 Time Complexity

Boyer-Moore Algorithm has a Time Complexity O(n/m) heedless whether the
text file contains the perfect match or not. Where ’n’ is length of text ’m’is
length of pattern.

8 Algorithm

1. Boyer-Moore Algorithm is extremely fast on large Text File which are
relative to length of pattern.

2. Boyer-Moore Algorithm perform comparisions from right to left or scans
characters from right to left begining with right most character of string.

3. In case of mismatch it uses two pre-computed functions to shift the pattern
characters to right.

Two functions are:

. Bad Character Shift.

. Good Suffix Shift.

8.1 Bad Character Shift

In this method the pattern characters are compared with the text string
from right to left. Now find for the text character that causes a mismatch
with the pattern. Then find for the occurance of that text character some-
where else in the pattern. Then the pattern is shifted that is aligned to
the mismatched text character. If the mismatched text character doesn’t
occur in the pattern shift the pattern to the position (m+1) where m is
the length of the pattern.

Example: Indiana State University - Text File

Find the University - Pattern in the text file

Process to find the pattern(university) in the Text File(Indiana
state university:

Step 1:

1. Indiana State university - Text File

university - Pattern

6

(Now we have to compare rightmost last character in university with the
text file, here ’t’(in text file) and ’y’(in pattern) if mismatch we have to
search correct match for ’t’ in the pattern if we find it we have to shift to
right to match the text file character).

Step 2:

2. Indiana State university

university

(Now again the same process repeats compare last rightmost charater
’y’(in pattern) with ’a’ (in text file) and if the match is not found shift
the whole pattern to right).

Step 3:

3. Indiana State university

university

(repeat the same process. Here if we compare last characters from right
’s’ in (text file) and ’y’ in (pattern) doesn’t match so we have to search for
letter ’s’ in pattern to match the ’s’ in text file. once we get the correct
match we have to shift the pattern to right, so the resultant will be in the
below form)

Step 4:

4. Indiana State university

university

(resultant is pattern matched with the text file).

8.2 Good Suffix Shift

In Good Suffix Method the pattern characters are compared with the text
file from right to left. And find the text character that causes mismatch
with the pattern. Now consider the suffix characters in the pattern which
matches with the text string for further process. Then find for the oc-
curance of that matched suffix character sequence in the pattern. The
pattern can be shifted untill the occurance of matched suffix character
sequence is aligned to the text character which matched with the pattern.

Example: x y z x y x y - Text File
z x y x y - pattern

Proving that Pattern matches the Text File:

7

So in the above exmaple the suffix characters in the pattern matches with
the text file. so if we consider the third charcter ’y’ in pattern and ’z’ in text
file mismatch. Then we have to find for the matched suffix charcter sequence in
the pattern. And we have to continue the process till we find the exact match
for Pattern in the Text File. so now the resultant answer is displayed below:

x y z x y x y
z x y x y

References

[1] Dan Gusfield Algorithms on Strings, Trees, Sequences 1997.

[2] Graham A.Stephen String Searching algorithms

8

